题目内容

如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,DE=DA=3AF=6.
(Ⅰ)求证:AC⊥BE
(Ⅱ)求多面体ABCDEF的体积.
考点:棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系
专题:综合题,空间位置关系与距离
分析:(I)在正方形ABCD中,可得AC⊥BD.根据DE⊥平面ABCD,得DE⊥AC,由线面垂直的判定定理可得AC⊥平面BDE,从而可得AC⊥BE;
(II)证明AB⊥平面ADEF,BC⊥平面CDE,利用V=VB-ADEF+VE-BCD,求出多面体ABCDEF的体积.
解答: (Ⅰ)证明:∵DE⊥平面ABCD,AC?平面ABCD,∴DE⊥AC.
∵四边形ABCD是正方形,∴AC⊥BD,
又∵BD、DE是平面BDE内的相交直线,
∴AC⊥平面BDE,结合BE?平面BDE,得AC⊥BE;
(Ⅱ)解:∵AB⊥AD,AB⊥DE,AD∩DE=D,
∴AB⊥平面ADEF,
同理BC⊥平面CDE,
∵AF∥DE,DE=DA=3AF=6,
∴V=VB-ADEF+VE-BCD=
1
3
×
1
2
×(2+6)×6×6+
1
3
×6×
6×6
2
=84-----------(12分)
点评:本题给出四棱锥的一条侧棱与底面垂直且底面是正方形,求证线线垂直并求多面体ABCDEF的体积,着重考查了线面垂直的判定与性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网