题目内容

已知|
OA
|=1,|
OB
|=1,∠AOB=
3
OC
=
1
2
OA
+
1
4
OB
,则
OA
OC
的夹角大小为
 
考点:平面向量数量积的运算
专题:计算题
分析:利用向量夹角公式计算cosθ=
a
b
|
a
||
b
|
,再利用特殊角的三角函数值确定夹角.
解答: 解:∵
OC
=
1
2
OA
+
1
4
OB
,∴|
OC
|2=|
1
2
OA
+
1
4
OB
|2=
1
4
OA
2
+
1
4
OB
OA
+
1
16
OB
2
=
1
4
×12+
1
4
×1×1×cos
3
+
1
16
×12
=
3
16

∴|
OC
|=
3
4

OA
OC
=(
1
2
OA
+
1
4
OB
OA
=
1
2
OA
2
+
1
4
OB
OA
=
3
8

OA
OC
的夹角的夹角θ的余弦值为cosθ=
OA
OC
|
OA
||
OC
|
=
3
8
3?
4
=
3
2

∴θ=
π
6

故答案为:
π
6
点评:本题考查向量夹角的计算,牢记公式,准确计算为要.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网