题目内容
14.已知钝角三角形的三边长度从小到大构成公比为q的等比数列,则q2的取值范围是$(\frac{{1+\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2})$.分析 由于钝角三角形的三边长度从小到大构成公比为q的等比数列,因此可设此三边为:1,q,q2(q>1),则cosα=$\frac{1+{q}^{2}-{q}^{4}}{2q}$<0,cosβ=$\frac{1+{q}^{4}-{q}^{2}}{2{q}^{2}}$>0,1+q>q2,解出即可得出.
解答 解:由于钝角三角形的三边长度从小到大构成公比为q的等比数列,因此可设此三边为:1,q,q2.(q>1).
则cosα=$\frac{1+{q}^{2}-{q}^{4}}{2q}$<0,cosβ=$\frac{1+{q}^{4}-{q}^{2}}{2{q}^{2}}$>0,1+q>q2,
可得:q4-q2-1>0,q4-q2+1>0,q2-q-1<0,(q>1).
解得q2>$\frac{1+\sqrt{5}}{2}$,恒成立,$1<q<\frac{1+\sqrt{5}}{2}$(即$1<{q}^{2}<\frac{3+\sqrt{5}}{2}$).
∴$\frac{1+\sqrt{5}}{2}<{q}^{2}$<$\frac{3+\sqrt{5}}{2}$.
故答案为:$(\frac{{1+\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2})$.
点评 本题考查了等比数列的通项公式及其性质、不等式的解法、余弦定理、三角形三边大小关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.过点(-1,1)的直线l与圆C:x2+y2=4在第一象限的部分有交点,则直线l斜率k的取值范围是( )
| A. | (-$\frac{1}{4}$,1) | B. | (-$\frac{1}{4}$,2) | C. | (-$\frac{1}{3}$,2) | D. | (-$\frac{1}{3}$,1) |
5.已知f(x)=sin$\frac{πx}{2}$,g(x)=cos$\frac{πx}{2}$则集合{x|f(x)=g(x)}等于( )
| A. | {x|x=4k+$\frac{1}{2}$,k∈Z} | B. | {x|x=2k+$\frac{1}{2}$,k∈Z} | C. | {x|x=4k±$\frac{1}{2}$,k∈Z} | D. | {x|x=2k+1,k∈Z} |
3.某工厂为了解用电量y与气温x℃之间的关系,随机统计了5天的用电量与当天平均气温,得到如下统计表:
$\sum_{i=1}^{5}$xiyi=5446,$\sum_{i=1}^{5}$xi2=4538,$\widehat{b}$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(1)请根据表中的数据,求出y关于x的线性回归方程,据气象预报9月3日的平均气温是23℃,请预测9月3日的用电量;(结果保留整数)
(2)从表中任选两天,求用电量(万度)都超过35的概率.
| 日期 | 8月1日 | 8月7日 | 8月14日 | 8月18日 | 8月25日 |
| 平均气温(℃) | 33 | 30 | 32 | 30 | 25 |
| 用电量(万度) | 38 | 35 | 41 | 36 | 30 |
(1)请根据表中的数据,求出y关于x的线性回归方程,据气象预报9月3日的平均气温是23℃,请预测9月3日的用电量;(结果保留整数)
(2)从表中任选两天,求用电量(万度)都超过35的概率.