题目内容

15.求函数y=x2+ax+3在[0,1]上的最大值.

分析 根据函数f(x)=x2+ax+3的图象和性质,分析区间[0,1]与对称轴的关系,可得函数f(x)=x2+ax+3在[0,1]上的最大值.

解答 解:函数f(x)=x2+ax+3的图象是开口朝上,且以直线x=-$\frac{a}{2}$为对称轴的抛物线,
若-$\frac{a}{2}$≤$\frac{0+1}{2}$=$\frac{1}{2}$,即a≥-1,
则当x=1时,函数f(x)取最大值a+4;
若-$\frac{a}{2}$>$\frac{0+1}{2}$=$\frac{1}{2}$,即a<-1,
则当x=0时,函数f(x)取最大值3.

点评 考查二次函数的对称轴的求解公式,二次函数的单调性,以及根据单调性求函数的最大值、最小值,根据取得顶点的情况或比较端点值来求二次函数最值的方法,要熟悉二次函数的图象

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网