题目内容

4.以(-2,1)为圆心且与直线x+y=3相切的圆的方程为(  )
A.(x-2)2+(y+1)2=2B.(x+2)2+(y-1)2=4C.(x-2)2+(y+1)2=8D.(x+2)2+(y-1)2=8

分析 直线与圆相切时,圆心到直线的距离等于圆的半径,所以利用点到直线的距离公式求出圆心到已知直线的距离d,即为所求圆的半径r,然后由圆心和求出的r写出圆的标准方程即可.

解答 解:由所求的圆与直线x+y-3=0相切,
得到圆心(-2,1)到直线x+y-3=0的距离d=$\frac{|-2+1-3|}{\sqrt{2}}$=2$\sqrt{2}$,
则所求圆的方程为:(x+2)2+(y-1)2=8.
故选:D

点评 此题考查了直线与圆的位置关系,以及圆的标准方程,直线与圆位置关系判别方法为:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当0<d<r时,直线与圆相交(d为圆心到直线的距离,r为圆的半径),同时要求学生会根据圆心和半径写出圆的标准方程.

练习册系列答案
相关题目
12.为备战“全国高中数学联赛”,我市某高中拟成立两个“数学竞赛班”,经过学校预选,选出40名学生,编成A,B两个班,分别由两位教师担任教练进行培训;经过两个月的培训,参加了市里组织的数学竞赛初赛(只有经过初赛,取得相应名次,才能取得参加省统一组织的“全国高中数学联赛”复赛资格),这40名学生的初赛成绩的茎叶图如图:
市数学会规定:140分以上(含140分)为市级一等奖,135分以上(含135分)为市级二等奖,100分以上(含100分)为市级三等奖.
(1)由茎叶图判断A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大小(只需写出结论);
(2)按照规则:获得市一等奖、二等奖的同学才能获得省里组织的“全国数学联赛”复赛资格,我们称这些同学为“种子选手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为称为“种子选手”与班级有关?
 A班B班合计
种子选手   
非种子选手   
合计   
(3)若在“种子选手”中选出3人,其中含有“获市级一等奖”的同学中为X人,求X的分布列及数学期望.
下面临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网