题目内容
4.以(-2,1)为圆心且与直线x+y=3相切的圆的方程为( )| A. | (x-2)2+(y+1)2=2 | B. | (x+2)2+(y-1)2=4 | C. | (x-2)2+(y+1)2=8 | D. | (x+2)2+(y-1)2=8 |
分析 直线与圆相切时,圆心到直线的距离等于圆的半径,所以利用点到直线的距离公式求出圆心到已知直线的距离d,即为所求圆的半径r,然后由圆心和求出的r写出圆的标准方程即可.
解答 解:由所求的圆与直线x+y-3=0相切,
得到圆心(-2,1)到直线x+y-3=0的距离d=$\frac{|-2+1-3|}{\sqrt{2}}$=2$\sqrt{2}$,
则所求圆的方程为:(x+2)2+(y-1)2=8.
故选:D
点评 此题考查了直线与圆的位置关系,以及圆的标准方程,直线与圆位置关系判别方法为:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当0<d<r时,直线与圆相交(d为圆心到直线的距离,r为圆的半径),同时要求学生会根据圆心和半径写出圆的标准方程.
练习册系列答案
相关题目
1.已知${A}_{n+1}^{2}$-${A}_{n}^{2}$=10,则n的值为( )
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
12.
为备战“全国高中数学联赛”,我市某高中拟成立两个“数学竞赛班”,经过学校预选,选出40名学生,编成A,B两个班,分别由两位教师担任教练进行培训;经过两个月的培训,参加了市里组织的数学竞赛初赛(只有经过初赛,取得相应名次,才能取得参加省统一组织的“全国高中数学联赛”复赛资格),这40名学生的初赛成绩的茎叶图如图:
市数学会规定:140分以上(含140分)为市级一等奖,135分以上(含135分)为市级二等奖,100分以上(含100分)为市级三等奖.
(1)由茎叶图判断A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大小(只需写出结论);
(2)按照规则:获得市一等奖、二等奖的同学才能获得省里组织的“全国数学联赛”复赛资格,我们称这些同学为“种子选手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为称为“种子选手”与班级有关?
(3)若在“种子选手”中选出3人,其中含有“获市级一等奖”的同学中为X人,求X的分布列及数学期望.
下面临界值表仅供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
市数学会规定:140分以上(含140分)为市级一等奖,135分以上(含135分)为市级二等奖,100分以上(含100分)为市级三等奖.
(1)由茎叶图判断A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大小(只需写出结论);
(2)按照规则:获得市一等奖、二等奖的同学才能获得省里组织的“全国数学联赛”复赛资格,我们称这些同学为“种子选手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为称为“种子选手”与班级有关?
| A班 | B班 | 合计 | |
| 种子选手 | |||
| 非种子选手 | |||
| 合计 |
下面临界值表仅供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
9.tan2016°的值所在的大致区间为( )
| A. | (-1,-$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{3}$,0) | C. | (0,$\frac{\sqrt{3}}{3}$) | D. | ($\frac{\sqrt{3}}{3}$,1) |
13.表面积为4π的球O放置在棱长为4的正方体ABCD-A1B1C1D1上,且与上表面A1B1C1D1相切,球心在正方体上表面的射影恰为该表面的中心,则四棱锥O-ABCD的外接球的半径为( )
| A. | $\frac{10}{3}$ | B. | $\frac{33}{10}$ | C. | $\frac{23}{6}$ | D. | $\frac{41}{12}$ |