题目内容

16.设数列{an}的前n项和为Sn,a1=$\frac{1}{3}$,且对任意m,n∈N*,am+n=am•an,若Sn<a恒成立,则a的最小值为$\frac{1}{2}$.

分析 由am+n=am•an,令m等于1化简后,由等比数列的定义确定此数列是等比数列,利用等比数列的前n项和的公式表示出Sn,利用极限思想和条件求出满足条件a的范围,再求出a的最小值

解答 解:由题意得,对任意正整数m,n,都有am+n=am•an
令m=1,得到an+1=a1•an,则$\frac{{a}_{n+1}}{{a}_{n}}$=a1=$\frac{1}{3}$,
则数列{an}是首项、公比都为$\frac{1}{3}$的等比数列,
∴Sn=$\frac{\frac{1}{3}[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}$=$\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n<$\frac{1}{2}$,
因为Sn<a对任意n∈N*恒成立,所以a≥$\frac{1}{2}$,则实数a的最小值是$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查了等比数列关系的确定,等比数列的前n项和的公式,以及不等式恒成立问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网