题目内容
7.为了得到函数$y=cos(x+\frac{π}{5})$,x∈R的图象,只需把余弦曲线y=cosx上的所有的点( )| A. | 向左平移$\frac{1}{5}$个单位长度 | B. | 向右平移$\frac{π}{5}$个单位长度 | ||
| C. | 向右平移$\frac{1}{5}$个单位长度 | D. | 向左平移$\frac{π}{5}$个单位长度 |
分析 根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:把余弦曲线y=cosx上的所有的点向左平移$\frac{π}{5}$个单位长度,
可得函数y=cos(x+$\frac{π}{5}$)的图象,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
19.
如图,在平行四边形ABCD中,$DE=\frac{1}{2}EC$,F为BC的中点,G为EF上的一点,且$\overrightarrow{AG}=m\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$,则实数m的值为( )
| A. | $\frac{7}{9}$ | B. | $-\frac{2}{9}$ | C. | $-\frac{1}{9}$ | D. | $\frac{5}{9}$ |
15.在用反证法证明“在△ABC中,若∠C是直角,则∠A和∠B都是锐角”的过程中,应该假设( )
| A. | ∠A和∠B都不是锐角 | B. | ∠A和∠B不都是锐角 | ||
| C. | ∠A和∠B都是钝角 | D. | ∠A和∠B都是直角 |