题目内容
设数列{an}的前n项的和Sn,已知a1=1,2Sn=nan+1-
n3-n2-
n,n∈N*.
(1)求a2的值;
(2)证明:数列{
}是等差数列,并求出数列{an}的通项公式;
(3)证明:对一切正整数n,有
+
+
+…+
<
.
| 1 |
| 3 |
| 2 |
| 3 |
(1)求a2的值;
(2)证明:数列{
| an |
| n |
(3)证明:对一切正整数n,有
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 7 |
| 4 |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)令n=1,即可求a2的值;
(2)根据递推数列,结合等差数列的定义即可证明数列{
}是等差数列,
(3)求出
的通项公式,利用放缩法以及裂项法,即可证明不等式
+
+
+…+
<
成立.
(2)根据递推数列,结合等差数列的定义即可证明数列{
| an |
| n |
(3)求出
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 7 |
| 4 |
解答:
解:(1)依题意:当n=1时,2S1=a2-
-1-
,
解得:a2=4,
(2)证明:∵a1=1,2Sn=nan+1-
n3-n2-
n,n∈N*.
当n≥2,则2Sn-1=(n-1)an-
(n-1)3-(n-1)2-
(n-1),
两式相减得:2an=nan+1-(n-1)an-
(3n2-3n+1)-(2n-1)-
,
整理得:(n+1)an=nan+1-n(n+1),
则
=
-1,
即
-
=1,n≥2.
又
-
=1,对任意n≥1都有
-
=1,
故数列{
}是以1为首项1为公差的等差数列,
所以
=1+(n-1)×1=n,则an=n2.
(3)证明:由(2)得:an=n2,
则
=
,
∵
=
<
=
-
∴
+
+
+…+
=
+
+
+…+
≤1+
+
+
+…+
+
<
+
-
+
-
+…+
-
=
+
-
=
-
<
.所以得证.
| 1 |
| 3 |
| 2 |
| 3 |
解得:a2=4,
(2)证明:∵a1=1,2Sn=nan+1-
| 1 |
| 3 |
| 2 |
| 3 |
当n≥2,则2Sn-1=(n-1)an-
| 1 |
| 3 |
| 2 |
| 3 |
两式相减得:2an=nan+1-(n-1)an-
| 1 |
| 3 |
| 2 |
| 3 |
整理得:(n+1)an=nan+1-n(n+1),
则
| an |
| n |
| an+1 |
| n+1 |
即
| an+1 |
| n+1 |
| an |
| n |
又
| a2 |
| 2 |
| a1 |
| 1 |
| an+1 |
| n+1 |
| an |
| n |
故数列{
| an |
| n |
所以
| an |
| n |
(3)证明:由(2)得:an=n2,
则
| 1 |
| an |
| 1 |
| n2 |
∵
| 1 |
| an |
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
≤1+
| 1 |
| 4 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n-2)(n-1) |
| 1 |
| (n-1)n |
<
| 5 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=
| 5 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 7 |
| 4 |
| 1 |
| n |
| 7 |
| 4 |
点评:本题主要考查数列递推公式的应用,根据递推数列结合等差数列的定义求出通项公式,利用放缩法是证明不等式的基本方法.
练习册系列答案
相关题目