题目内容

已知mn>0,且m+n=1,则
1
m
+
1
n
的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式的性质即可得出.
解答: 解:∵mn>0,且m+n=1,
∴m,n>0.
1
m
+
1
n
=(m+n)(
1
m
+
1
n
)=2+
n
m
+
m
n
≥2+2
n
m
m
n
=4,当且仅当m=n=
1
2
时取等号.
1
m
+
1
n
的最小值为4.
故答案为:4.
点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网