题目内容
18.在△ABC中,角A,B,C所对的边分别为a,b,c(a≥b),$sin({\frac{π}{3}-A})=sinB$,$asinC=\sqrt{3}sinA$,则a+b的最大值为( )| A. | 2 | B. | 3 | C. | $2\sqrt{3}$ | D. | 4 |
分析 根据三角形内角的取值范围和已知条件$sin({\frac{π}{3}-A})=sinB$推知$C=\frac{2π}{3}$.再根据$asinC=\sqrt{3}sinA$求得$c=\sqrt{3}$,所以利用不等式的性质来求a+b的最大值.
解答 解:∵$sin({\frac{π}{3}-A})=sinB,a≥b$,
∴$\frac{π}{3}-A=B$,即$C=\frac{2π}{3}$.
由$asinC=\sqrt{3}sinA$得$c=\sqrt{3}$,
则a2+b2+ab=3,即${({a+b})^2}=3+ab≤3+{({\frac{a+b}{2}})^2}$,
得(a+b)2≤4⇒a+b≤2.
故a+b的最大值为2.
故选:A.
点评 本题主要考察了同角三角函数关系式的应用,属于基本知识的考查.
练习册系列答案
相关题目
8.抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,圆M与y轴相切,过原点O作倾斜角为$\frac{π}{3}$的直线m,交直线l于点A,交圆M于不同的两点O、B,且|AO|=|BO|=2,若P为抛物线C上的动点,则$\overrightarrow{PM}•\overrightarrow{PF}$的最小值为( )
| A. | -2 | B. | 2 | C. | $\frac{7}{4}$ | D. | 3 |
13.已知命题p:?x∈(0,+∞),3x-cosx>0,则下列叙述正确的是( )
| A. | ¬p:?x∈(0,+∞),3x-cosx≤0 | B. | ¬p:?x∈(0,+∞),3x-cosx<0 | ||
| C. | ¬p:?x∈(-∞,0],3x-cosx≤0 | D. | ¬p是假命题 |
3.已知实数x,y满足$\left\{\begin{array}{l}x-2y-2≥0\\ 2x+y-4≥0\\ x-y-3≤0\end{array}\right.$则x2+(y+2)2的取值范围是( )
| A. | [$\frac{65}{9}$,25] | B. | [$\frac{36}{5}$,25] | C. | [16,25] | D. | [9,25] |
7.设g(x)为定义在R上的奇函数,且g(x)不恒为0,若$f(x)=(\frac{1}{{{a^x}-1}}-\frac{1}{b})g(x)$(a>0且a≠1)为偶函数,则常数b=( )
| A. | -2 | B. | 2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |