题目内容
一个几何体的三视图如图所示,则此几何体的体积是 .

考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱锥.
解答:
解:由三视图可知,该几何体为三棱锥,
其底面面积为S=
×4×4=8,
高为3,
则其体积为V=
×3×8=8.
故答案为:8.
其底面面积为S=
| 1 |
| 2 |
高为3,
则其体积为V=
| 1 |
| 3 |
故答案为:8.
点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.
练习册系列答案
相关题目
若0≤x≤2,则f(x)=
的最大值( )
| x(8-3x) |
A、
| ||||
| B、2 | ||||
C、
| ||||
D、
|
正三棱柱ABC-A1B1C1中,各棱长均为2,M为AA1中点,N为BC的中点,则在棱柱的表面上从点M到点N的最短距离是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知α为第二象限角,sinα+cosα=
,则cos2α=( )
| ||
| 3 |
A、
| ||||
B、
| ||||
C、-
| ||||
D、-
|
函数y=2sin(2x+
)是( )
| π |
| 2 |
| A、周期为π的偶函数 |
| B、周期为π的奇函数 |
| C、周期为2π的偶函数 |
| D、周期为2π的奇函数 |