题目内容
已知x的不等式a(x-a)(x-
)>0,其中0<a<1,则它的解是( )
| 1 |
| a |
A、{x|x<a或x>
| ||
| B、{x|x>a} | ||
C、{x|x<
| ||
D、{x|x<
|
考点:一元二次不等式的解法
专题:不等式的解法及应用
分析:利用一元二次不等式的解法即可得出.
解答:
解:∵0<a<1,∴
>a.
∴不等式a(x-a)(x-
)>0化为(x-a)(x-
)>0,解得x>
或x<a.
∴不等式的解集为:{x|x>
或x<a}.
故选:A.
| 1 |
| a |
∴不等式a(x-a)(x-
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
∴不等式的解集为:{x|x>
| 1 |
| a |
故选:A.
点评:本题考查了一元二次不等式的解法,属于基础题.
练习册系列答案
相关题目
我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组解,二分法求函数零点等.对算法的描述有:
①对一类问题都有效;
②对个别问题有效;
③计算可以一步步地进行,每一步都有惟一的结果;
④是一种通法,只要按部就班地做,总能得到结果.
以上正确描述算法的有( )
①对一类问题都有效;
②对个别问题有效;
③计算可以一步步地进行,每一步都有惟一的结果;
④是一种通法,只要按部就班地做,总能得到结果.
以上正确描述算法的有( )
| A、1个 | B、2个 | C、3个 | D、4个 |
下列命题中,满足“p∨q”为真,“p∧q”为假,“¬p”为真是( )
| A、p:0=∅,q:0∈∅ | ||||
| B、p:在△ABC中,若cos2A=cos2B,则A=B;q:y=cosx在第一象限是减函数 | ||||
C、p:a+b≥2
| ||||
D、p:函数y=
|
海上有A、B两小岛相距10海里,从A望B、C两岛视角
,从B望A、C两岛视角
,则从C望A、B的视角是( )
| π |
| 3 |
| 5π |
| 12 |
| A、30° | B、45° |
| C、60° | D、90° |
已知 cosx=-
,其中x∈(π,2π),则x等于( )
| 1 |
| 3 |
A、π+arccos
| ||
B、π-arccos
| ||
C、π+arccos(-
| ||
D、2π-arccos
|
函数f(x)=-x|x+a|+b为奇函数的充要条件是( )
| A、b=0 |
| B、a=0 |
| C、ab=0 |
| D、a2+b2=0 |
定义域为R的奇函数f(x)单调递增,且对任意实数a,b满足f(a)+f(b-1)=0,则a+b=( )
| A、-1 | B、0 | C、1 | D、不确定 |
已知f(x)=x2,i是虚数单位,则在复平面中复数
对应的点在( )
| f(1+i) |
| 3+i |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |