题目内容
已知数列{an}前n项和为Sn,首项为a1,且
,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求证:
+
+
+…+
<
.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求证:
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由题意可得2an=
+sn,令n=1可求a1,n≥2时,sn=2an-
,sn-1=2an-1-
,两式相减可得递推式,由递推式可判断该数列为等比数列,从而可得an;
(2)表示出bn,进而可得
,并拆项,利用裂项相消法可求和,由和可得结论.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)表示出bn,进而可得
| 1 |
| bn |
解答:
解:(1)∵
,an,Sn成等差数列,
∴2an=
+sn,
当n=1时,2a1=
+a1,解得a1=
;
当n≥2时,sn=2an-
,sn-1=2an-1-
,两式相减得:an=Sn-Sn-1=2an-2an-1,
∴
=2,
所以数列{an}是首项为
,公比为2的等比数列,
∴an=
•2n-1=2n-2.
(2)bn=(log2a2n+1)×(log2a2n+3)
=log222n+1-2×log222n+3-2
=(2n-1)(2n+1),
∴
=
=
(
-
),
∴
+
+
+…+
=
(1-
+
-
+…+
-
)=
(1-
)=
-
<
.
| 1 |
| 2 |
∴2an=
| 1 |
| 2 |
当n=1时,2a1=
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,sn=2an-
| 1 |
| 2 |
| 1 |
| 2 |
∴
| an |
| an-1 |
所以数列{an}是首项为
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
(2)bn=(log2a2n+1)×(log2a2n+3)
=log222n+1-2×log222n+3-2
=(2n-1)(2n+1),
∴
| 1 |
| bn |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 4n+2 |
| 1 |
| 2 |
点评:本题考查数列与不等式的综合,考查裂项相消法对数列求和,考查等比数列的通项公式,属中档题.
练习册系列答案
相关题目
已知函数f(x)=ax3+bx2+x(a,b∈R且ab≠0)的图象如图,且|x1|>|x2|,则有( )
| A、a>0,b>0 |
| B、a<0,b<0 |
| C、a<0,b>0 |
| D、a>0,b<0 |
函数f(x)=
(x∈R)的值域是( )
| x |
| x2+1 |
A、[-
| ||||
B、[0,
| ||||
C、(-
| ||||
D、[-
|
过抛物线的焦点F作互相垂直的两条直线,分别交准线于P、Q两点,又过P、Q分别作抛物线对称轴OF的平行线,交抛物线于M、N两点,则M、N、F三点( )
| A、共圆 | B、共线 |
| C、在另一抛物线上 | D、在一双曲线上 |
已知函数f(x)=ex-1,g(x)=-x2+4x-4,若存在实数a使f(a)=g(b),则b的取值范围为( )
| A、[1,+∞) | ||||
B、(2-
| ||||
| C、[1,3] | ||||
| D、(1,3) |