题目内容

已知数列{an}前n项和为Sn,首项为a1,且
1
2
,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求证:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
1
2
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由题意可得2an=
1
2
+sn,令n=1可求a1,n≥2时,sn=2an-
1
2
,sn-1=2an-1-
1
2
,两式相减可得递推式,由递推式可判断该数列为等比数列,从而可得an
(2)表示出bn,进而可得
1
bn
,并拆项,利用裂项相消法可求和,由和可得结论.
解答: 解:(1)∵
1
2
,an,Sn成等差数列,
∴2an=
1
2
+sn
当n=1时,2a1=
1
2
+a1,解得a1=
1
2

当n≥2时,sn=2an-
1
2
,sn-1=2an-1-
1
2
,两式相减得:an=Sn-Sn-1=2an-2an-1
an
an-1
=2,
所以数列{an}是首项为
1
2
,公比为2的等比数列,
∴an=
1
2
•2n-1=2n-2
(2)bn=(log2a2n+1)×(log2a2n+3
=log222n+1-2×log222n+3-2
=(2n-1)(2n+1),
1
bn
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
1
b1
+
1
b2
+
1
b3
+…+
1
bn
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
1
2
-
1
4n+2
1
2
点评:本题考查数列与不等式的综合,考查裂项相消法对数列求和,考查等比数列的通项公式,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网