题目内容

(1)化简:
sin(5400-x)
cos(9000-x)
cos(8100-x)
sin(4500-x)
cos(3600-x)
sin(-x)

(2)已知tanx=2,求
cosx+sinx
cosx-sinx
的值.
考点:同角三角函数基本关系的运用,运用诱导公式化简求值
专题:三角函数的求值
分析:(1)原式中的角度变形后,利用诱导公式化简,计算即可得到结果;
(2)原式分子分母除以cosx,利用同角三角函数间基本关系化简,把tanx的值代入计算即可求出值.
解答: 解:(1)原式=
sin(360°+180°-x)
cos(720°+180°-x)
cos(720°+90°-x)
sin(360°+90°-x)
cosx
-sinx
=
sinx
-cosx
sinx
cosx
cosx
-sinx
=tanx;
(2)∵tanx=2,
∴原式=
1+tanx
1-tanx
=
1+2
1-2
=-3.
点评:此题考查了同角三角函数基本关系的运用,以及运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网