题目内容
如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为( )
| A、6 | ||
| B、12 | ||
C、2
| ||
D、4
|
考点:函数的值
专题:函数的性质及应用
分析:设BE=x,表示出CE=16-x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.
解答:
解:设BE=x,则CE=BC-BE=16-x,
∵沿EF翻折后点C与点A重合,
∴AE=CE=16-x,
在Rt△ABE中,AB2+BE2=AE2,
即82+x2=(16-x)2,解得x=6,∴AE=16-6=10,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,
∴AE=AF=10,
过点E作EH⊥AD于H,则四边形ABEH是矩形,
∴EH=AB=8,AH=BE=6,∴FH=AF-AH=10-6=4,
在Rt△EFH中,EF=
=
=4
.
故选:D.
∵沿EF翻折后点C与点A重合,
∴AE=CE=16-x,
在Rt△ABE中,AB2+BE2=AE2,
即82+x2=(16-x)2,解得x=6,∴AE=16-6=10,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,
∴AE=AF=10,
过点E作EH⊥AD于H,则四边形ABEH是矩形,
∴EH=AB=8,AH=BE=6,∴FH=AF-AH=10-6=4,
在Rt△EFH中,EF=
| EH2+FH2 |
| 64+16 |
| 5 |
故选:D.
点评:本题考查线段长的求法,是中档题,解题时要注意函数知识在生产生活中的实际应用,注意用数学知识解决实际问题能力的培养.
练习册系列答案
相关题目
椭圆C:
+
=1(a>b>0)的右焦点为F,椭圆C与x轴正半轴交于A点,与y轴正半轴交于B(0,2),且
•
=4
+4,则椭圆C的方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| BF |
| BA |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知函数f(x)=
,若函数y=f(x)-k(x+1)有三个零点,则实数k的取值范围是( )
|
| A、(1,+∞) | ||
B、(-
| ||
C、(0,
| ||
D、(
|
甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
cos300°=( )
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|