题目内容
抛物线y2=2px(p>0)的焦点为F,A为抛物线上一点,则以A为圆心,AF为半径的圆与抛物线的准线的位置关系为( )
| A、相交 | B、相切 |
| C、相离 | D、以上都有可能 |
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意结合抛物线的定义可得|PF|等于点P到准线l的距离,由此求得以以P为圆心、以|PF|为半径的圆与抛物线的准线的位置关系.
解答:
解:∵F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,
由抛物线的定义可得|PF|等于点P到准线l的距离,
故以P为圆心,|PF|为半径的圆与抛物线的准线相切,
故选B.
由抛物线的定义可得|PF|等于点P到准线l的距离,
故以P为圆心,|PF|为半径的圆与抛物线的准线相切,
故选B.
点评:本题主要考查抛物线的定义和性质,直线和圆的位置关系的确定方法,属于中档题.
练习册系列答案
相关题目
有两只水桶,桶1中有a升水,桶2是空桶.现将桶1中的水缓慢注入桶2中,t分钟后桶1中剩余的水符合指数衰减曲线y1=
,桶2中的水就是y2=a-
(k为常数),假设5分钟时,桶1和桶2中的水量相等.从注水开始时,经过m分钟时桶2中的水是桶1中水的3倍,则m=( )
| a |
| 2kt |
| a |
| 2kt |
| A、8 | B、10 | C、15 | D、20 |
已知向量
=(1,-2),
=(x,4),且
∥
,则|
+
|的值是( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、2 | ||
B、
| ||
C、
| ||
D、
|
函数y=xa,(a∈R)为奇函数,且在区间(0,+∞)上单调递增,则实数a的值等于( )
| A、-1 | ||
B、
| ||
| C、2 | ||
| D、3 |
若直线(2m2+m-3)x+(m2-m)y=4m-1与直线2x-3y-5=0平行,则实数m的值为( )
A、-
| ||
| B、1 | ||
C、1或-
| ||
| D、-1 |
下列关系中正确的个数为( )
①
∈R
②
∉Q
③|-3|∉N*
④|-
|∈Q.
①
| 1 |
| 2 |
②
| 2 |
③|-3|∉N*
④|-
| 3 |
| A、1个 | B、2个 | C、3个 | D、4个 |
设某种动物的体重y(单位:千克)与身长x(单位:厘米)具有线性相关关系,根据一组样本数据建立的回归直线方程为
=0.85x-85.71,则下列结论中不正确的是( )
| y |
| A、y与x具有正的线性相关关系 | ||||
B、回归直线必定经过样本中心点(
| ||||
| C、若某一种该种动物身长增加1厘米,则其体重必定为0.85千克 | ||||
| D、若某一只该种动物身长170厘米,则其体重必定为58.79千克 |
已知复数z1=
i和复数z2=
-
i,则复数z1•
的值为( )
| 3 |
| 1 |
| 2 |
| ||
| 6 |
. |
| z2 |
A、-
| ||||||
B、
| ||||||
C、
| ||||||
D、
|