题目内容
函数y=xa,(a∈R)为奇函数,且在区间(0,+∞)上单调递增,则实数a的值等于( )
| A、-1 | ||
B、
| ||
| C、2 | ||
| D、3 |
考点:幂函数的性质
专题:函数的性质及应用
分析:由幂函数在(0,+∞)的单调性缩小a的范围,再由幂函数的奇偶性即可确定a的值
解答:
解:∵y=xa在(0,+∞)上单调递增
∴a>0
∴a的可能取值为
,2,3.
又∵y=xa为奇函数
当a=
,2时,y=xα不是奇函数;
故选:D.
∴a>0
∴a的可能取值为
| 1 |
| 2 |
又∵y=xa为奇函数
当a=
| 1 |
| 2 |
故选:D.
点评:本题考查幂函数的性质,要注意幂函数的指数a与第一象限内的图象的单调性之间的关系,a<0是单调递减,a>0时单调递增;同时要求会判断幂函数的奇偶性.属简单题
练习册系列答案
相关题目
双曲线x2-y2=1的离心率为( )
A、
| ||
| B、2 | ||
| C、4 | ||
| D、1 |
已知直线l:xsinθ-ycosθ+sinθ+λ=0,下列命题中真命题序号为( )
①直线l的斜率为tanθ;
②存在实数λ,使得对任意的θ,直线l恒过定点;
③对任意非零实数λ,都有对任意的θ,直线l与同一个定圆相切;
④若圆O:(x+1)2+y2=4上到直线l距离为1的点恰好3个,则λ=±1.
①直线l的斜率为tanθ;
②存在实数λ,使得对任意的θ,直线l恒过定点;
③对任意非零实数λ,都有对任意的θ,直线l与同一个定圆相切;
④若圆O:(x+1)2+y2=4上到直线l距离为1的点恰好3个,则λ=±1.
| A、①② | B、②③ |
| C、②③④ | D、①③④ |
若A={x|x2-1<0},B={x|lgx<1},则A∩B=( )
| A、{x|-1<x<10} |
| B、{x|0<x<10} |
| C、{x|0<x<1} |
| D、{x|-1<x<1} |
抛物线y2=2px(p>0)的焦点为F,A为抛物线上一点,则以A为圆心,AF为半径的圆与抛物线的准线的位置关系为( )
| A、相交 | B、相切 |
| C、相离 | D、以上都有可能 |
在△ABC中,内角A,B,C的对边分别为a,b,c,若a2-b2+c2+ac=0则角B的大小为( )
| A、120° | B、30° |
| C、60° | D、150° |
若θ=
(0≤k≤10,k∈Z),则sinθ+cosθ≥1的概率为( )
| kπ |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|
平面向量
与
的夹角为150°,
=(2,0),|
|=2,则|
+
|=( )
| a |
| b |
| a |
| b |
| a |
| 3 |
| b |
A、
| ||
| B、2 | ||
C、2
| ||
| D、4 |