题目内容
12.已知直线l1与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)交于A,B两点,且AB中点M的横坐标为b,过M且与直线l1垂直的直线l2过双曲线C的右焦点,则双曲线的离心率为( )| A. | $\frac{1+\sqrt{5}}{2}$ | B. | $\sqrt{\frac{1+\sqrt{5}}{2}}$ | C. | $\frac{1+\sqrt{3}}{2}$ | D. | $\sqrt{\frac{1+\sqrt{3}}{2}}$ |
分析 由A,B代入双曲线方程,作差整理可得k=$\frac{c-b}{{y}_{M}}$=$\frac{{b}^{3}}{{a}^{2}{y}_{M}}$,化简得a2=bc,即可求出双曲线的离心率.
解答 解:设A(x1,y1),B(x2,y2),M(b,yM),
由A,B代入双曲线方程,作差整理可得k=$\frac{c-b}{{y}_{M}}$=$\frac{{b}^{3}}{{a}^{2}{y}_{M}}$,
化简得a2=bc,
即a4=(c2-a2)c2,有e4-e2-1=0,得e=$\sqrt{\frac{1+\sqrt{5}}{2}}$.
故选B.
点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
2.已知抛物线C:y2=4x的焦点是F,过点F的直线与抛物线C相交于P、Q两点,且点Q在第一象限,若$3\overrightarrow{PF}=\overrightarrow{FQ}$,则直线PQ的斜率是( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
20.已知函数y=2sinωx(ω>0)的图象与直线y=-2的相邻的两个公共点之间的距离为$\frac{2π}{3}$,则ω的值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{3}{2}$ | C. | 3 | D. | $\frac{2}{3}$ |
2.已知抛物线y2=4x的焦点F与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点重合,它们在第一象限内的交点为P,且PF与x轴垂直,则椭圆的离心率为( )
| A. | $\sqrt{3}-\sqrt{2}$ | B. | $\sqrt{2}-1$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |