题目内容

4.已知sinα=$\frac{1}{5}$,α∈($\frac{π}{2}$,π),则sin2α的值为$-\frac{4}{25}\sqrt{6}$.

分析 由已知利用同角三角函数基本关系式可求cosα,进而利用二倍角的正弦函数公式即可计算得解.

解答 解:∵sinα=$\frac{1}{5}$,α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴sin2α=2sinαcosα=2×$\frac{1}{5}×$(-$\frac{2\sqrt{6}}{5}$)=$-\frac{4}{25}\sqrt{6}$.
故答案为:$-\frac{4}{25}\sqrt{6}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网