题目内容
已知数列{an}的前n项和Sn=3n-1,其中n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn=3bn-1+an(n≥2);
(Ⅰ)证明:数列{
}为等差数列;
(Ⅱ)求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn=3bn-1+an(n≥2);
(Ⅰ)证明:数列{
| bn |
| 3n-1 |
(Ⅱ)求数列{bn}的前n项和Tn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)an=Sn-Sn-1=(3n-1)-(3n-1-1)=2•3n-1,n≥2,由此能求出an=2•3n-1.(n∈N*).
(Ⅱ)(Ⅰ)当n≥2时,bn=3bn-1+2•3n-1,将其变形为
=
+2,由此能证明数列{
}是首项为
=1,公差为2的等差数列.
(Ⅱ)由已知得bn=(2n-1)•3n-1,由此利用错位相减法能求出数列{bn}的前n项和Tn.
(Ⅱ)(Ⅰ)当n≥2时,bn=3bn-1+2•3n-1,将其变形为
| bn |
| 3n-1 |
| bn-1 |
| 3n-2 |
| bn |
| 3n-1 |
| b1 |
| 30 |
(Ⅱ)由已知得bn=(2n-1)•3n-1,由此利用错位相减法能求出数列{bn}的前n项和Tn.
解答:
(Ⅰ)解:∵数列{an}的前n项和Sn=3n-1,
∴an=Sn-Sn-1=(3n-1)-(3n-1-1)=2•3n-1,n≥2,
∵n=1时,a1=S1也适合上式,
∴an=2•3n-1.(n∈N*).
(Ⅱ)(Ⅰ)证明:当n≥2时,bn=3bn-1+2•3n-1,
将其变形为
=
+2,
即
-
=2,
∴数列{
}是首项为
=1,公差为2的等差数列.
(Ⅱ)解:由(Ⅰ)得
=1+2(n-1)=2n-1,
∴bn=(2n-1)•3n-1,
∴Tn=1×30+3×3+5×32+…+(2n-1)×3n-1,
∴3Tn=1×3+3×32+5×33+…+(2n-1)×3n,
两式相减,得2Tn=-1-2(3+32+…+3n-1)+(2n-1)×3n,
∴Tn=(n-1)•3n+1,n∈N*.
∴an=Sn-Sn-1=(3n-1)-(3n-1-1)=2•3n-1,n≥2,
∵n=1时,a1=S1也适合上式,
∴an=2•3n-1.(n∈N*).
(Ⅱ)(Ⅰ)证明:当n≥2时,bn=3bn-1+2•3n-1,
将其变形为
| bn |
| 3n-1 |
| bn-1 |
| 3n-2 |
即
| bn |
| 3n-1 |
| bn-1 |
| 3n-2 |
∴数列{
| bn |
| 3n-1 |
| b1 |
| 30 |
(Ⅱ)解:由(Ⅰ)得
| bn |
| 3n-1 |
∴bn=(2n-1)•3n-1,
∴Tn=1×30+3×3+5×32+…+(2n-1)×3n-1,
∴3Tn=1×3+3×32+5×33+…+(2n-1)×3n,
两式相减,得2Tn=-1-2(3+32+…+3n-1)+(2n-1)×3n,
∴Tn=(n-1)•3n+1,n∈N*.
点评:本题考查数列的通项公式的求法,考查等差数列的证明,考查前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目