题目内容

9.设x1,x2(x1<x2)是函数f(x)=lnx+$\frac{1}{2}$x2-(b-1)x的两个极值点,若b≥$\frac{7}{2}$,则$\frac{{x}_{1}}{{x}_{2}}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 问题转化为x1,x2是方程x2-(b-1)x+1=0的根,求出x1,x2的大致范围,解x1+$\frac{1}{{x}_{1}}$≥$\frac{5}{2}$,求出x1的最大值即x2的最小值,从而求出$\frac{{x}_{1}}{{x}_{2}}$的最大值.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$+x-(b-1)=$\frac{{x}^{2}-(b-1)x+1}{x}$,
故x1,x2是方程x2-(b-1)x+1=0的根,
∴$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=b-1}\\{{x}_{1}{•x}_{2}=1}\end{array}\right.$,
由x1•x2=1,x1<x2得:
0<x1<1,x2>1,
而b≥$\frac{7}{2}$,则x1+x2≥$\frac{5}{2}$,
∴x1+$\frac{1}{{x}_{1}}$≥$\frac{5}{2}$,解得:x1≤$\frac{1}{2}$,
∴$\frac{{x}_{1}}{{x}_{2}}$=${{x}_{1}}^{2}$≤$\frac{1}{4}$,
故选:B.

点评 本题考查了函数的极值的意义,考查韦达定理,转化思想,解不等式问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网