题目内容
5.已知P为抛物线y2=4x上的任意一点,记点P到y轴的距离为d,对给定点A(3,4),则|PA|+d的最小值为( )| A. | $2\sqrt{5}$ | B. | $2\sqrt{5}-1$ | C. | $2\sqrt{5}+1$ | D. | $2\sqrt{5}-2$ |
分析 可设抛物线的焦点为F(1,0),根据抛物线的定义,当|PA|+d最小时,|PA|+|PF|最小,从而问题转化为求|PA|+|PF|的最小值,而由图形便可看出|PA|+|PF|的最小值为|AF|,而|AF|=$2\sqrt{5}$,这样便可得出|PA|+d的最小值.
解答
解:如图,设抛物线焦点F(1,0);
|PA|+d最小时,|PA|+d+1最小;
根据抛物线的定义,d+1=|PF|;
∴只要求|PA|+|PF|的最小值即可;
由图看出,连接AF,当P点为AF和抛物线交点时,|PA|+|PF|最小;
且最小值为|AF|=$\sqrt{4+16}=2\sqrt{5}$;
∴|PA|+d+1的最小值为$2\sqrt{5}$;
∴|PA|+d的最小值为$2\sqrt{5}-1$.
故选:B.
点评 考查数形结合解题的方法,抛物线的标准方程,根据抛物线的标准方程能求出抛物线的焦点坐标,以及抛物线的定义,两点间的距离公式.
练习册系列答案
相关题目
16.3名医生和6名护士被分配到3所学校为学生检查身体,每个学校分配1名医生和2名护士,不同分配方法共有多少种.( )
| A. | 540 | B. | 270 | C. | 180 | D. | 90 |
13.“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y=$\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.$\sum_{i=1}^4{{x_i}^2}={5^2}+{5.5^2}+{6.5^2}+{7^2}$=146.5.
| 价格x | 5 | 5.5 | 6.5 | 7 |
| 销售量y | 12 | 10 | 6 | 4 |
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y=$\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.$\sum_{i=1}^4{{x_i}^2}={5^2}+{5.5^2}+{6.5^2}+{7^2}$=146.5.
20.已知圆心在原点,半径为R的圆与△ABC的边有公共点,其中A(4,0),B(6,8),C(2,4),则R的取值范围是( )
| A. | $[\frac{{8\sqrt{5}}}{5},\;10]$ | B. | [4,10] | C. | $[2\sqrt{5},\;10]$ | D. | $[\frac{{6\sqrt{5}}}{5},\;10]$ |
10.已知$C_{10}^x=C_{10}^{3x-2}$,则x=( )
| A. | 1 | B. | 9 | C. | 1或2 | D. | 1或3 |