题目内容
已知集合M={x∈R|-3≤x≤1},N={x∈R|x+1<0},那么M∩N=( )
| A、{-1,0,1} |
| B、{-3,-2,-1} |
| C、{x|-1≤x≤1} |
| D、{x|-3≤x<-1} |
考点:交集及其运算
专题:集合
分析:求出N中不等式的解集确定出N,找出M与N的交集即可.
解答:
解:由N中的不等式解得:x<-1,即N={x|x<-1},
∵M={x∈R|-3≤x≤1},
∴M∩N={x|-3≤x<-1}.
故选:D.
∵M={x∈R|-3≤x≤1},
∴M∩N={x|-3≤x<-1}.
故选:D.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
若a∈R,则“a=3”是“(a+1)(a-3)=0”的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知曲线f(x)=sin2x+
cos2x关于点(x0,0)成中心对称,若x0∈[0,
],则x0=( )
| 3 |
| π |
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|
己知定义在R上的函数y=f(x)满足f(x)=f(4-x),且当x≠2时,其导函数f′(x)满足f′(x)>
xf′(x),若a∈(2,3),则( )
| 1 |
| 2 |
| A、f(log2a)<f(2a)<f(2) |
| B、f(2a)<f(2)<f(log2a) |
| C、f(2a)<f(log2a)<f(2) |
| D、f(2)<f(log2a)<f(2a) |
圆O中,弦PQ满足|PQ|=2,则
•
=( )
| PQ |
| PO |
| A、2 | ||
| B、1 | ||
C、
| ||
| D、4 |
(
+x2)3的展开式的常数项为( )
| 1 |
| x |
| A、1 | ||
| B、3 | ||
C、-
| ||
D、
|