题目内容

20.已知数列{an}为等差数列,a1=sinθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),a5=a3+1,且其前10项和S10=$\frac{55}{2}$.
(1)求θ的值;
(2)求数列bn=an+($\frac{1}{2}$)${\;}^{2{a}_{n}}$的前n项和.

分析 (1)通过a5=a3+1可知d=$\frac{1}{2}$,进而结合S10=$\frac{55}{2}$可知a1=$\frac{1}{2}$,进而结合三角函数的单调性可知θ的值为$\frac{π}{6}$;
(2)通过(1)可知an=$\frac{n}{2}$,bn=$\frac{n}{2}$+$\frac{1}{{2}^{n}}$,利用分组求和法计算即得结论.

解答 解:(1)记等差数列{an}的公差为d,则由a5=a3+1可知1=a5-a3=2d,即d=$\frac{1}{2}$,
由S10=$\frac{55}{2}$=10a1+$\frac{10×9}{2}$×$\frac{1}{2}$可知a1=$\frac{1}{2}$,
又a1=sinθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),
所以θ的值为$\frac{π}{6}$;
(2)由(1)可知an=$\frac{n}{2}$,bn=an+($\frac{1}{2}$)${\;}^{2{a}_{n}}$=$\frac{n}{2}$+$\frac{1}{{2}^{n}}$,
所以所求值为$\frac{1}{2}$×$\frac{n(n+1)}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$\frac{n(n+1)}{4}$-$\frac{1}{{2}^{n}}$+1.

点评 本题考查数列的通项及前n项和,考查三角函数的单调性及求值,考查分组法求和,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网