题目内容

10.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$,
(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性.

分析 (1)根据函数成立的条件进行求解即可.
(2)根据函数奇偶性的定义进行判断即可.

解答 解:(1)x的取值需满足2x-1≠0,则x≠0,
即f(x)的定义域是(-∞,0)∪(0,+∞).
(2)由(1)知定义域是(-∞,0)∪(0,+∞),关于原点对称,
则f(-x)=$\frac{1}{{2}^{-x}-1}$+$\frac{1}{2}$=$\frac{{2}^{x}}{1-{2}^{x}}$+$\frac{1}{2}$,
∴f(x)+f(-x)
=$\frac{{2}^{x}}{1-{2}^{x}}$+$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$=$\frac{1}{{2}^{x}-1}$+$\frac{-{2}^{x}}{{2}^{x}-1}$+1=-1+1=0.
∴f(-x)=-f(x),
∴函数f(x)为奇函数.

点评 本题主要考查函数定义域和奇偶性的判断,根据奇偶性的定义结合指数幂的运算性质是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网