题目内容
10.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$,(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性.
分析 (1)根据函数成立的条件进行求解即可.
(2)根据函数奇偶性的定义进行判断即可.
解答 解:(1)x的取值需满足2x-1≠0,则x≠0,
即f(x)的定义域是(-∞,0)∪(0,+∞).
(2)由(1)知定义域是(-∞,0)∪(0,+∞),关于原点对称,
则f(-x)=$\frac{1}{{2}^{-x}-1}$+$\frac{1}{2}$=$\frac{{2}^{x}}{1-{2}^{x}}$+$\frac{1}{2}$,
∴f(x)+f(-x)
=$\frac{{2}^{x}}{1-{2}^{x}}$+$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$=$\frac{1}{{2}^{x}-1}$+$\frac{-{2}^{x}}{{2}^{x}-1}$+1=-1+1=0.
∴f(-x)=-f(x),
∴函数f(x)为奇函数.
点评 本题主要考查函数定义域和奇偶性的判断,根据奇偶性的定义结合指数幂的运算性质是解决本题的关键.
练习册系列答案
相关题目
20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,则f(f($\frac{1}{9}$))?( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
18.
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是冷BC的中点,点F在冷CC1上,且CF=2FC1,P是侧面四边形BCC1B1内一点(含边界).若A1P∥平面AEF,则线段
A1P长度的取值范围是( )
A1P长度的取值范围是( )
| A. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$ | B. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$ | C. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$ | D. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$ |