题目内容
19.椭圆$\frac{x^2}{4}+{y^2}=1$上的点到直线$x-y+5\sqrt{5}=0$的距离的最大值是3$\sqrt{10}$.分析 设P点坐标是(2cosα,sinα),(0°≤α<360°),利用点P到直线x-y+5$\sqrt{5}$=0的距离公式和三角函数的性质即可求出最大值.
解答 解:设P点坐标是(2cosα,sinα),(0°≤α<360°)
∴点P到直线x-y+5$\sqrt{5}$=0的距离d=$\frac{|2cosα-sinα+5\sqrt{5}|}{\sqrt{2}}$=$\frac{\sqrt{5}|cos(α+θ)+5|}{\sqrt{2}}$≤$\frac{6\sqrt{5}}{\sqrt{2}}$=3$\sqrt{10}$,
故答案为:3$\sqrt{10}$
点评 本题考查直线与椭圆的位置关系,解题时要认真审题,注意椭圆的参数方程、点到直线的距离公式、三角函数的性质的灵活运用.
练习册系列答案
相关题目
7.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①5,9,100,107,111,121,180,195,200,265,
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,65,92,119,146,173,200,227,254;
关于上述样本的下列结论中,正确的是( )
①5,9,100,107,111,121,180,195,200,265,
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,65,92,119,146,173,200,227,254;
关于上述样本的下列结论中,正确的是( )
| A. | ②、④都可能为分层抽样 | B. | ①、③都不能为分层抽样 | ||
| C. | ①、④都可能为系统抽样 | D. | ②、③都不能为系统抽样 |
11.已知直线l过点P(3,-2)且与椭圆$C:\frac{x^2}{20}+\frac{y^2}{16}=1$相交于A,B两点,则使得点P为弦AB中点的直线斜率为( )
| A. | $-\frac{3}{5}$ | B. | $-\frac{6}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{3}{5}$ |