题目内容

抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=60°,过点AB的中点M作抛物线准线的垂线MN,垂足为N.则
|MN|
|AB|
的最大值为
 
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先设出|AF|,|BF|分别过A,B,M作准线的垂线,垂足分别是A′,B′,N,进而表示出|MN|,利用余弦定理表示出|AB|利用基本不等式求得其范围,最后求得
|MN|
|AB|
的最大值.
解答: 解:设|AF|=r1,|BF|=r2,分别过A,B,M作准线的垂线,垂足分别是A′,B′,N,则|MN|=
r1+r2
2

由余弦定理得|AB|2=r
 
2
1
+r
 
2
2
-2r1r2cos60°=(r1+r22-3r1r2c≥(r1+r22-3•
(r1+r2)2
4
1
4
(r1+r22
∴(
|MN|
|AB|
2
(r1+r2)2
4
(r1+r2)2
4
=1,
|MN|
|AB|
的最大值为1.
故答案为:1
点评:本题主要考查了抛物线的简单性质.注重了学生对基础知识综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网