题目内容

5.已知tan(x+$\frac{π}{2}$)=5,则$\frac{1}{sinxcosx}$=(  )
A.$\frac{26}{5}$B.-$\frac{26}{5}$C.±$\frac{26}{5}$D.-$\frac{5}{26}$

分析 由已知利用诱导公式求得tanx,把1用sin2x+cos2x代替,然后化弦为切得答案.

解答 解:∵tan(x+$\frac{π}{2}$)=5,∴cotx=-5,则tanx=-$\frac{1}{5}$,
$\frac{1}{sinxcosx}$=$\frac{si{n}^{2}x+co{s}^{2}x}{sinxcosx}=\frac{1+ta{n}^{2}x}{tanx}=\frac{1+\frac{1}{25}}{-\frac{1}{5}}=-\frac{26}{5}$.
故选:B.

点评 本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网