题目内容

已知函数f(x)=Asin(wx+φ),x∈R(其中A>0,w>0,0<φ<
π
2
)的图象与x轴的交点中,相邻2个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2).求:
(1)函数f(x)的解析式;
(2)当x∈[
π
3
π
2
),求f(x)的值域.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
(2)由条件利用正弦函数的定义域和值域,求得f(x)的值域.
解答: 解:(1)根据与x轴的相邻2个交点之间的距离为
π
2
,可得
T
2
=
π
w
=
π
2
,求得w=2.
再根据图象上一个最低点为M(
3
,-2),可得A=2,sin(2×
3
+φ)=-1,∴2×
3
+φ=2kπ-
π
2
,k∈z,
即φ=2kπ-
11π
6

再由0<φ<
π
2
,∴φ=
π
6
,∴f(x)=2sin(2x+
π
6
).
(2)当x∈[
π
3
π
2
),2x+
π
6
∈[
6
6
),故当2x+
π
6
=
6
 时,函数取得最大值为1,当2x+
π
6
=
6
 时,函数取得最小值为-1,
故函数的值域为[-1,1].
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的定义域和值域,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网