题目内容

14.设a=sin$\frac{π}{5}$,b=log${\;}_{\sqrt{2}}$$\sqrt{3}$,c=($\frac{1}{4}$)${\;}^{\frac{2}{3}}$,则(  )
A.a<c<bB.b<a<cC.c<a<bD.c<b<a

分析 利用三角函数、对数函数、指数函数的单调性直接求解.

解答 解:∵$\frac{1}{2}$=sin$\frac{π}{6}$<a=sin$\frac{π}{5}$<1,
b=log${\;}_{\sqrt{2}}$$\sqrt{3}$>$lo{g}_{\sqrt{2}}\sqrt{2}$=1,
c=($\frac{1}{4}$)${\;}^{\frac{2}{3}}$=($\frac{1}{2}$)${\;}^{\frac{4}{3}}$<$\frac{1}{2}$,
∴c<a<b.
故选:C.

点评 本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网