题目内容
已知a,b,c分别为△ABC角A、B、C所对的边,若满足a=
,b=
,A=45°,则角B的大小为( )
| 2 |
| 3 |
| A、90° | B、60° |
| C、60°或120° | D、120° |
考点:正弦定理
专题:解三角形
分析:利用正弦定理列出关系式,把a,b,sinA的值代入求出sinB的值,即可确定出B的度数.
解答:
解:∵△ABC中,a=
,b=
,A=45°,
∴由正弦定理
=
得:sinB=
=
=
,
∵a<b,∴A<B,
∴B=60°或120°,
故选:C.
| 2 |
| 3 |
∴由正弦定理
| a |
| sinA |
| b |
| sinB |
| bsinA |
| a |
| ||||||
|
| ||
| 2 |
∵a<b,∴A<B,
∴B=60°或120°,
故选:C.
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目
在△ABC中,角A,B,C所对的边分别为a,b,c,若(a2+c2-b2)tanB=
ac,则sinB的值为( )
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若函数f(x)=|x2-2x|-kx有3个不同的零点,则实数k的取值范围是( )
| A、(0,2) |
| B、(0,3] |
| C、(0,4) |
| D、(0,+∞) |
设a=4
,b=log3
,c=(
)
,则( )
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 3 |
| 1 |
| 5 |
| A、a>b>c |
| B、b>a>c |
| C、a>c>b |
| D、b>c>a |