题目内容

如图,梯形ABCD中AB∥CD,AB=2CD,点O为空间任意一点,设
OA
=
a
OB
=
b
OC
=
c
,则向量
OD
a
b
c
表示为(  )
A、
a
-
b
+2
c
B、
a
-
b
-2
c
C、-
1
2
a
+
1
2
b
+
c
D、
1
2
a
-
1
2
b
+
c
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:易知
CD
=
1
2
BA
,由向量加法法则可得
OD
=
OA
+
AC
+
CD
=
OA
+
OC
-
OA
+
1
2
BA
,从而可得答案.
解答: 解:因为AB∥CD,AB=2CD,所以
CD
=
1
2
BA

OD
=
OA
+
AC
+
CD

=
OA
+
OC
-
OA
+
1
2
BA

=
OC
+
1
2
(
OA
-
OB
)
=
1
2
a
-
1
2
b
+
c

故选D.
点评:本题考查平面向量的基本定理及其意义,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网