题目内容
我班制定了数学学习方案:星期一和星期日分别解决4个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有( )
| A、50种 | B、51种 |
| C、140种 | D、141种 |
考点:计数原理的应用
专题:计算题,排列组合
分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.
解答:
解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,
所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,
所以共有
+
+
+
=141种.
故选D.
所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,
所以共有
| C | 0 6 |
| C | 1 6 |
| C | 1 5 |
| C | 2 6 |
| C | 2 4 |
| C | 3 6 |
| C | 3 3 |
故选D.
点评:本题考查组合知识的运用,考查学生分析解决问题的能力,确定中间“多一个”或“少一个”的天数必须相同是关键.
练习册系列答案
相关题目
利用计算机产生0~1之间的群与随机数a,则事件-
<3a-1<0发生的概率为( )
| 1 |
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知数列{an}满足a1=0,an+1=an+2n(n∈N*),那么a2011的值是( )
| A、2 0112 |
| B、2 012×2 011 |
| C、2 009×2 010 |
| D、2 010×2 011 |
一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数的和大于2n”,则算过关,则某人连过前三关的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|