题目内容

15.某地区最近十年粮食需求量逐年上升,下表是部分统计数据:
年份x20102011201220132014
需求量y万吨236246257276286
(1)利用所给数据求年需求量y与年份x之间的线性回归方程$\hat y=\hat bx+\hat a$.
(2)利用(1)中所求出的线性回归方程预测该地区2016年的粮食需求量.
(附:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}\bar-\bar x)}^2}}}},\hat a=\bar y-\hat b\bar x$)

分析 (1)由所给数据看出,年需求量与年份之间是近似直线上升,利用回归直线方程,对数据预处理,求出预处理后的回归直线方程,从而求出对应的回归直线方程;
(2)利用所求的回归直线方程,计算2016年的粮食需求量即可.

解答 解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据预处理如下:

年份-2 012-2-1012
需求量-257-21-1101929
由预处理后的数据,容易算得$\overline{x}$=0,$\overline{y}$=3.2,$\stackrel{∧}{b}$=$\frac{42+11+0+19+58}{4+1+0+1+4}$=13,$\stackrel{∧}{a}$=3.2;
由上述计算结果,知所求回归直线方程为$\stackrel{∧}{y}$-257=13(x-2012)+3.2,
即$\stackrel{∧}{y}$=13(x-2012)+260.2;
(2)利用所求得的直线方程,可预测2016年的粮食需求量为
13×(2016-2012)+260.2=13×4+260.2=312.2(万吨).

点评 本题考查了求线性回归方程以及利用回归直线方程预测结果的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网