题目内容
7.已知命题p:?c>0,y=(5-c)x在R上是增函数,命题q:?x∈R,x2+2x+c>0,若p∧q为假命题,p∨q为真命题,求实数c的取值范围.分析 先求出命题p、q为真时m的范围,由p、q一真一假列式求解
解答 解:命题p真:?c>0,y=(5-c)x在R上是增函数,∴0<c<4,
命题q真:?x∈R,x2+2x+c>0⇒△=4-4c<0⇒c>1;
若p∧q为假命题,p∨q为真命题,则p、q一真一假,
①p为真q为假时,$\left\{\begin{array}{l}{0<c<4}\\{c≤1}\end{array}\right.$⇒0<c≤1;
②p为假q为真时,$\left\{\begin{array}{l}{c≤0\\;或c≥4}\\{c>1}\end{array}\right.$⇒c≥4;
综上实数c的取值范围为:(0,1]∪[4,+∞)
点评 本题考查了命题真假的应用,属于基础题.
练习册系列答案
相关题目
9.已知x≥5,则f(x)=$\frac{{x}^{2}-4x+9}{x-4}$有( )
| A. | 最大值8 | B. | 最小值10 | C. | 最大值12 | D. | 最小值14 |
15.设F1,F2是椭圆C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}$=1(a1>b1>0)与双曲线C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}$=1(a2>0,b2>0)的公共焦点,曲线C1,C2在第一象限内交于点M,∠F1MF2=90°,若椭圆C1的离心率e1∈[$\frac{{\sqrt{6}}}{3}$,1),则双曲线C2的离心率e2的范围是( )
| A. | $({1,\sqrt{3}}]$ | B. | $({1,\sqrt{2}}]$ | C. | $[{\sqrt{3},+∞})$ | D. | $[{\sqrt{2},+∞})$ |
12.“x=1”是“x2+x-2=0”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
19.对于任意两个向量$\overrightarrow{a}$,$\overrightarrow{b}$,下列说法正确的是( )
| A. | 若$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$ | B. | 当实数λ=0时,λ$\overrightarrow{a}$=0 | ||
| C. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$| | D. | |$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|-|$\overrightarrow{b}$| |