ÌâÄ¿ÄÚÈÝ
ÉèµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3a3ÊÇ8a1Óëa5µÄµÈ²îÖÐÏÊýÁÐ{bn}Âú×ã2n2-£¨t+bn£©n+
bn=0£¨t¡ÊR£¬n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨tµÄÖµ£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©µ±{bn}ΪµÈ²îÊýÁÐʱ£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn} µÄǰnÏîºÍ£¬ÊÇ·ñ´æÔÚm£¬Ê¹µÃTm=1180³ÉÁ¢£¿Èô´æÔÚÇó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| 3 |
| 2 |
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨tµÄÖµ£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©µ±{bn}ΪµÈ²îÊýÁÐʱ£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn} µÄǰnÏîºÍ£¬ÊÇ·ñ´æÔÚm£¬Ê¹µÃTm=1180³ÉÁ¢£¿Èô´æÔÚÇó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ,ÊýÁеÄÓ¦ÓÃ,µÈ±ÈÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓÃÒÑÖªÌõ¼þÇó³ö¹«±È£¬È»ºóÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÀûÓÃÒÑÖªÌõ¼þÇó³öbnµÄ±í´ïʽ£¬ÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬¼´¿ÉÇó³ötµÄÖµ£»
£¨3£©Ê×ÏÈÇó³öÔÚÊýÁÐ{bn}ÖУ¬am¼°ÆäÇ°ÃæËùÓÐÏîÖ®ºÍ£¬È»ºóÇó³öa9£¼1180£¼a10£¬ÔÙÇó³öÓÖa10ÔÚÊýÁÐ{bn}ÖеÄÏîÊý£¬½ø¶øÇó³ömµÄÖµ£®
£¨2£©ÀûÓÃÒÑÖªÌõ¼þÇó³öbnµÄ±í´ïʽ£¬ÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬¼´¿ÉÇó³ötµÄÖµ£»
£¨3£©Ê×ÏÈÇó³öÔÚÊýÁÐ{bn}ÖУ¬am¼°ÆäÇ°ÃæËùÓÐÏîÖ®ºÍ£¬È»ºóÇó³öa9£¼1180£¼a10£¬ÔÙÇó³öÓÖa10ÔÚÊýÁÐ{bn}ÖеÄÏîÊý£¬½ø¶øÇó³ömµÄÖµ£®
½â´ð£º
½â£º£¨1£©ÉèµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3a3ÊÇ8a1Óëa5µÄµÈ²îÖÐÏ
¿ÉµÃ£º6a3=8a1+a5£¬6¡Á2q2=8¡Á2+2¡Áq4£¬½âµÃq=2£®
¡àan=2n¡4·Ö
£¨2£©ÊýÁÐ{bn}Âú×ã2n2-£¨t+bn£©n+
bn=0£¨t¡ÊR£¬n¡ÊN*£©£®
µÃbn=
£¬ËùÒÔb1=2t-4£¬b2=16-4t£¬b3=12-2t£¬
ÔòÓÉb1+b3=2b2£¬µÃt=3¡8·Ö
µ±t=3ʱ£¬bn=2n£¬ÓÉbn-bn-1=2£¬ËùÒÔÊýÁÐ{bn}ΪµÈ²îÊýÁС10·Ö
£¨3£©£©¡ßan=2n
¡àÔÚÊýÁÐ{bn}ÖУ¬ak=2k£®ak+1=2k+1£®
¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬¿ÉµÃÒ»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn} µÄǰnÏîºÍ£¬
ÔÚÊýÁÐ{bn}ÖУ¬am¼°ÆäÇ°ÃæËùÓÐÏîÖ®ºÍΪ[2+22+¡+2m-1+2m]+£¨2¡Á2+2¡Á4+¡+4m£©=2m2+2m+1+
2m£®
¡ß2¡Á92+29+2¡Á9=692£¼1180£¼2¡Á102+210+2¡Á10=1244£¬¼´a9£¼1180£¼a10£®
´æÔÚm£¬Ê¹µÃTm=1180£¬
´æÔÚm=9+£¨b1+b2+¡+b8£©+8=9+2+4+6+8+10+14+16+8=89 ¡16·Ö£®
¿ÉµÃ£º6a3=8a1+a5£¬6¡Á2q2=8¡Á2+2¡Áq4£¬½âµÃq=2£®
¡àan=2n¡4·Ö
£¨2£©ÊýÁÐ{bn}Âú×ã2n2-£¨t+bn£©n+
| 3 |
| 2 |
µÃbn=
| 2n2-tn | ||
n-
|
ÔòÓÉb1+b3=2b2£¬µÃt=3¡8·Ö
µ±t=3ʱ£¬bn=2n£¬ÓÉbn-bn-1=2£¬ËùÒÔÊýÁÐ{bn}ΪµÈ²îÊýÁС10·Ö
£¨3£©£©¡ßan=2n
¡àÔÚÊýÁÐ{bn}ÖУ¬ak=2k£®ak+1=2k+1£®
¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬¿ÉµÃÒ»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn} µÄǰnÏîºÍ£¬
ÔÚÊýÁÐ{bn}ÖУ¬am¼°ÆäÇ°ÃæËùÓÐÏîÖ®ºÍΪ[2+22+¡+2m-1+2m]+£¨2¡Á2+2¡Á4+¡+4m£©=2m2+2m+1+
2m£®
¡ß2¡Á92+29+2¡Á9=692£¼1180£¼2¡Á102+210+2¡Á10=1244£¬¼´a9£¼1180£¼a10£®
´æÔÚm£¬Ê¹µÃTm=1180£¬
´æÔÚm=9+£¨b1+b2+¡+b8£©+8=9+2+4+6+8+10+14+16+8=89 ¡16·Ö£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽÒÔ¼°ÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴ󣮶ÔÓÚ²»µÈʽºã³ÉÁ¢ÎÊÌâͨ¹ýת»¯³Éº¯Êý×îÖµÎÊÌâÀ´½â¾ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
PÊÇË«ÇúÏß
-
=1ÉÏÒ»µã£¬F1¡¢F2ÊÇË«ÇúÏßµÄÁ½¸ö½¹µã£¬ÇÒ|PF1|=17£¬Ôò|PF2|µÄֵΪ£¨¡¡¡¡£©
| x2 |
| 64 |
| y2 |
| 36 |
| A¡¢33 | B¡¢33»ò1 |
| C¡¢1 | D¡¢25»ò9 |
Å×ÎïÏßx2=
yµÄ×¼Ïß·½³ÌÊÇy-2=0£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
| 1 |
| a |
A¡¢
| ||
B¡¢-
| ||
| C¡¢8 | ||
| D¡¢-8 |
ÔÚ¡÷ABCÖУ¬ÒÑÖªa=4£¬b=4
£¬A=30¡ã£¬BΪÈñ½Ç£¬ÄÇô½ÇA£¬B£¬CµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
| 3 |
| A¡¢A£¾B£¾C |
| B¡¢B£¾A£¾C |
| C¡¢C£¾B£¾A |
| D¡¢C£¾A£¾B |