题目内容
P是双曲线
-
=1上一点,F1、F2是双曲线的两个焦点,且|PF1|=17,则|PF2|的值为( )
| x2 |
| 64 |
| y2 |
| 36 |
| A、33 | B、33或1 |
| C、1 | D、25或9 |
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的a,b,c,根据|PF1|=17<c+a=18,则P在双曲线的左支上,再由双曲线的定义,即可得到所求值.
解答:
解:双曲线
-
=1的a=8,b=6,
c=
=
=10,
由于|PF1|=17<c+a=18,
则P在双曲线的左支上,
由双曲线的定义,可得,
|PF2|-|PF1|=2a=16,
则有|PF2|=16+|PF1|=16+17=33.
故选A.
| x2 |
| 64 |
| y2 |
| 36 |
c=
| a2+b2 |
| 64+36 |
由于|PF1|=17<c+a=18,
则P在双曲线的左支上,
由双曲线的定义,可得,
|PF2|-|PF1|=2a=16,
则有|PF2|=16+|PF1|=16+17=33.
故选A.
点评:本题考查双曲线的方程和性质、定义,考查运算能力,属于基础题和易错题.
练习册系列答案
相关题目
设全集U=R,集合A={x|1<x<4},集合B={x|2≤x<5},则A∩(CUB)=( )
| A、{x|1≤x<2} |
| B、{x|x<2} |
| C、{x|x≥5} |
| D、{x|1<x<2} |
在三棱锥P-ABC中,PA=PB=PC,底面△ABC是正三角形,M、N分别是侧棱PB、PC的中点.若平面AMN⊥平面PBC,则侧棱PB与平面ABC所成角的正切值是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若双曲线
-
=1的离心率为2,则其渐近线的斜率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、±
| ||||
B、±
| ||||
C、±
| ||||
D、±
|
顶点在原点,以x轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于( )
| A、4 | B、8 | C、16 | D、32 |