ÌâÄ¿ÄÚÈÝ
2£®¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÓÚÈÎÒâÕýÕûÊýn¶¼ÓÐan+T=an³ÉÁ¢£¬Ôò³ÆÊýÁÐ{an}ÊÇÒÔTΪÖÜÆÚµÄÖÜÆÚÊýÁУ®Éèb1=m£¨0£¼m£¼1£©£¬¶ÔÈÎÒâÕýÕûÊýn¶¼ÓÐ${b_{n+1}}=\left\{{\begin{array}{l}{{b_n}-1\;\;£¨{b_n}£¾1£©£¬\;\;\;}\\{\frac{1}{b_n}\;\;\;£¨0£¼{b_n}¡Ü1£©}\end{array}}\right.$ÈôÊýÁÐ{bn}ÊÇÒÔ5ΪÖÜÆÚµÄÖÜÆÚÊýÁУ¬ÔòmµÄÖµ¿ÉÒÔÊÇ$\sqrt{2}$-1£®£¨Ö»ÒªÇóÌîдÂú×ãÌõ¼þµÄÒ»¸ömÖµ¼´¿É£©·ÖÎö È¡m=$\sqrt{2}$-1=b1£¬¾¹ýÑéÖ¤Âú×ãbn+5=bn£®
½â´ð ½â£ºÈ¡m=$\sqrt{2}$-1=b1£¬Ôòb2=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1£¬b3=$\sqrt{2}$£¬b4=$\sqrt{2}$-1£¬b5=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1£¬b6=$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}$-1£¬Âú×ãbn+5=bn£®
¹Ê´ð°¸Îª£º$\sqrt{2}$-1£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢ÊýÁеÄÖÜÆÚÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®
ÈçͼΪÖйú´«Í³ÖÇÁ¦Íæ¾ß³°àËø£¬ÆðÔ´ÓڹŴúºº×彨ÖþÖÐÊ×´´µÄé¾Ã®½á¹¹£¬ÕâÖÖÈýάµÄÆ´²åÆ÷¾ßÄÚ²¿µÄ°¼Í¹²¿·Ö£¨¼´é¾Ã®½á¹¹£©ÄöºÏ£¬Íâ¹Û¿´ÊÇÑÏË¿ºÏ·ìµÄÊ®×ÖÁ¢·½Ì壬ÆäÉÏÏ¡¢×óÓÒ¡¢Ç°ºóÍêÈ«¶Ô³Æ£¬Áù¸ùÍêÈ«ÏàͬµÄÕýËÄÀâÖù·Ö³ÉÈý×飬¾90¡ãé¾Ã®ÆðÀ´£®ÏÖÓÐһ³°àËøµÄÕýËÄÀâÖùµÄµ×ÃæÕý·½Ðα߳¤Îª1£¬Óû½«Æä·ÅÈëÇòÐÎÈÝÆ÷ÄÚ£¨ÈÝÆ÷±ÚµÄºñ¶ÈºöÂÔ²»¼Æ£©£¬ÈôÇòÐÎÈÝÆ÷±íÃæ»ýµÄ×îСֵΪ30¦Ð£¬ÔòÕýËÄÀâÖùÌåµÄ¸ßΪ£¨¡¡¡¡£©
| A£® | $2\sqrt{6}$ | B£® | $2\sqrt{7}$ | C£® | $4\sqrt{2}$ | D£® | 5 |