题目内容
13.已知命题p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q为真,则实数m的取值范围是( )| A. | [-2,2] | B. | (-2,0] | C. | (-2,0) | D. | [0,2] |
分析 命题p:?x∈R,x2-mx+1=0,则△≥0,解得m.可得¬p.q:?x∈R,ex-m>0,则m<ex,因此m≤0.根据¬p∧q为真,即可得出.
解答 解:命题p:?x∈R,x2-mx+1=0,则△=m2-4≥0,解得m≥2,或m≤-2.¬p为:m∈(-2,2).
q:?x∈R,ex-m>0,则m<ex,因此m≤0.
若¬p∧q为真,
则实数m的取值范围是(-2,0].
故选:B.
点评 本题考查了函数的单调性、方程与不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.若复数z满足iz=l+3i,其中i为虚数单位,则$\overline z$=( )
| A. | -3+i | B. | -3-i | C. | 3+i | D. | 3-i |
1.已知集合$A=\{x|y=\sqrt{2x-{x^2}}\}$,B={x|-1<x<1},则A∪B=( )
| A. | [0,1) | B. | (-1,2) | C. | (-1,2] | D. | (-∞,0]∪(1,+∞) |
8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,则AC=( )
| A. | $\sqrt{6}$-1 | B. | 1+$\sqrt{6}$ | C. | $\sqrt{3}$-1 | D. | 1+$\sqrt{3}$ |
5.通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:
(Ⅰ)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 男生 | 女生 | 合计 | |
| 挑同桌 | 30 | 40 | 70 |
| 不挑同桌 | 20 | 10 | 30 |
| 总计 | 50 | 50 | 100 |
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |