题目内容
5.通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:| 男生 | 女生 | 合计 | |
| 挑同桌 | 30 | 40 | 70 |
| 不挑同桌 | 20 | 10 | 30 |
| 总计 | 50 | 50 | 100 |
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (Ⅰ)根据分层抽样原理求出样本中挑同桌有3人,不挑同桌有2人,
利用列举法求出基本事件数,计算对应的概率值;
(Ⅱ)根据2×2列联表计算观测值,对照临界值表得出结论.
解答 解:(Ⅰ)根据分层抽样方法抽取容量为5的样本,挑同桌有3人,记为A、B、C,
不挑同桌有2人,记为d、e;
从这5人中随机选取3人,基本事件为
ABC,ABd,ABe,ACd,ACe,Ade,BCd,BCe,Bde,Cde共10种;
这3名学生中至少有2名要挑同桌的事件为概率为
ABC,ABd,ABe,ACd,ACe,BCd,BCe,共7种;
故所求的概率为P=$\frac{7}{10}$;
(Ⅱ)根据以上2×2列联表,计算观测值
K2=$\frac{100{×(30×10-20×40)}^{2}}{70×30×50×50}$≈4.7619>3.841,
对照临界值表知,有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关.
点评 本题考查了分层抽样原理与列举法求基本事件的概率和2×2列联表计算观测值的问题,是综合题.
练习册系列答案
相关题目
13.已知命题p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q为真,则实数m的取值范围是( )
| A. | [-2,2] | B. | (-2,0] | C. | (-2,0) | D. | [0,2] |
10.某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲,乙,丙三地实施人工降雨,其实验统计结果如下
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲,乙,丙三地中缓解旱情的个数”为随机变量X,求X的分布列和数学期望.
| 方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验次数 |
| A | 甲 | 2次 | 6次 | 4次 | 12次 |
| B | 乙 | 3次 | 6次 | 3次 | 12次 |
| C | 丙 | 2次 | 2次 | 8次 | 12次 |
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲,乙,丙三地中缓解旱情的个数”为随机变量X,求X的分布列和数学期望.
14.已知函数f(x)=2017x+log2017($\sqrt{{x^2}+1}$+x)-2017-x+2,则关于x的不等式f(3x+1)+f(x)>4的解集为( )
| A. | $(-∞,-\frac{1}{4})$ | B. | $(-\frac{1}{4},+∞)$ | C. | (0,+∞) | D. | (-∞,0) |