题目内容
8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q两点,且PQ⊥PF1,若$|PQ|=\frac{5}{12}|P{F_1}|$,则双曲线离心率e为( )| A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\frac{{\sqrt{37}}}{2}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{37}}}{5}$ |
分析 由PQ⊥PF1,|PQ|与|PF1|的关系,可得|QF1|于|PF1|的关系,由双曲线的定义可得2a=|PF1|-|PF2|=|QF1|-|QF2|,解得|PF1|,然后利用直角三角形,推出a,c的关系,可得双曲线的离心率.
解答 解:可设P,Q为双曲线右支上一点,
由PQ⊥PF1,|PQ|=$\frac{5}{12}$|PF1|,
在直角三角形PF1Q中,|QF1|=$\sqrt{|P{F}_{1}{|}^{2}+|{PQ|}^{2}}$=$\frac{13}{12}$|PF1|,
由双曲线的定义可得:2a=|PF1|-|PF2|=|QF1|-|QF2|,
由|PQ|=$\frac{5}{12}$|PF1|,即有|PF2|+|QF2|=$\frac{5}{12}$|PF1|,
即为|PF1|-2a+$\frac{13}{12}$|PF1|-2a=$\frac{5}{12}$|PF1|,
∴(1-$\frac{5}{12}$+$\frac{13}{12}$)|PF1|=4a,
解得|PF1|=$\frac{12a}{5}$.
|PF2|=|PF1|-2a=$\frac{2a}{5}$,
由勾股定理可得:2c=|F1F2|=$\sqrt{(\frac{12a}{5})^{2}+(\frac{2a}{5})^{2}}$=$\frac{2\sqrt{37}}{5}a$,
可得e=$\frac{\sqrt{37}}{5}$.
故选:D.
点评 本题考查了双曲线的定义、方程及其性质,考查勾股定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.已知$\vec a,\vec b$均为单位向量,且$(2\vec a+\vec b)•(\vec a-2\vec b)=-\frac{{3\sqrt{3}}}{2}$,则向量$\vec a,\vec b$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
16.从标有数字1,2,3的三个红球和标有数字2,3的两个白球中任取两个球,则取得两球的数字和颜色都不相同的概率为( )
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=7,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
20.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在体积为$\frac{9π}{2}$的同一球面上,则PA的长为( )
| A. | 3 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |