题目内容

17.AB是圆C:x2+(y-1)2=1的直径,P是椭圆E:$\frac{x^2}{4}+{y^2}=1$上的一点,则$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围是[-1,$\frac{13}{3}$].

分析 由$\overrightarrow{PA}=\overrightarrow{PC}+\overrightarrow{CA}$,$\overrightarrow{PB}=\overrightarrow{PC}+\overrightarrow{CB}$,$\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{0},\overrightarrow{CA}•C\overrightarrow{B}=-1$
得$\overrightarrow{PA}•\overrightarrow{PB}$=($\overrightarrow{PC}+\overrightarrow{CA}$)•($\overrightarrow{PC}+\overrightarrow{CB})$=${\overrightarrow{PC}}^{2}+\overrightarrow{PC}(\overrightarrow{CB}+\overrightarrow{CA})+\overrightarrow{CA}•\overrightarrow{CB}$
=${\overrightarrow{PC}}^{2}-1$=x2+(y-1)2-1=x2+y2-2y=-3y2-2y+4
 再结合y的范围即可求出结论

解答 解:设P(x,y),
∵$\overrightarrow{PA}=\overrightarrow{PC}+\overrightarrow{CA}$,$\overrightarrow{PB}=\overrightarrow{PC}+\overrightarrow{CB}$,$\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{0},\overrightarrow{CA}•C\overrightarrow{B}=-1$
∴$\overrightarrow{PA}•\overrightarrow{PB}$=($\overrightarrow{PC}+\overrightarrow{CA}$)•($\overrightarrow{PC}+\overrightarrow{CB})$=${\overrightarrow{PC}}^{2}+\overrightarrow{PC}(\overrightarrow{CB}+\overrightarrow{CA})+\overrightarrow{CA}•\overrightarrow{CB}$
=${\overrightarrow{PC}}^{2}-1$=x2+(y-1)2-1=x2+y2-2y=-3y2-2y+4
∵y∈[-1,1],∴-3y2-2y+4$∈[-1,\frac{13}{3}]$,
∴$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围是:[-1,$\frac{13}{3}$].
故答案为:[-1,$\frac{13}{3}$]

点评 本题主要考查椭圆的基本性质,向量数量积的基本运算技巧,选好基底是解决向量问题的基本技巧之一,及二次函数的值域问题,属于中档题,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网