题目内容

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=7,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 运用向量的数量积的性质:向量的平方即为模的平方,可得$\overrightarrow{a}$•$\overrightarrow{b}$=-3,再由向量的夹角公式,计算即可得到所求角.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=7,
可得$\overrightarrow{a}$2-$\overrightarrow{a}$•$\overrightarrow{b}$=4-$\overrightarrow{a}$•$\overrightarrow{b}$=7,可得$\overrightarrow{a}$•$\overrightarrow{b}$=-3,
cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{-3}{2×3}$=-$\frac{1}{2}$,
由0≤<$\overrightarrow{a}$,$\overrightarrow{b}$>≤π,
可得<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$.
故选:C.

点评 本题考查向量的夹角公式的运用,考查向量数量积的性质:向量的平方即为模的平方,考查化简整理的运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网