题目内容
已知lga=2.31,lgb=1.31,则
=( )
| b |
| a |
A、
| ||
B、
| ||
| C、10 | ||
| D、100 |
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的运算法则求解.
解答:
解:∵lga=2.31,lgb=1.31,
∴lga-lgb=lg
=2.31-1.31=1,
∴
=10.
故选:C.
∴lga-lgb=lg
| a |
| b |
∴
| a |
| b |
故选:C.
点评:本题考查对数值的求法,是基础题,解题时要注意对数性质的合理运用.
练习册系列答案
相关题目
设函数y=f(x)在R上有意义,对给定正数M,定义函数fM(x)=
,则称函数fM(x)为f(x)的“孪生函数”,若给定函数f(x)=2-x2,M=1,则y=fM(x)的值域为( )
|
| A、[1,2] |
| B、[-1,2] |
| C、(-∞,2] |
| D、(-∞,1] |
已知a,b是两条不同的直线,α是一个平面,则下列说法正确的是( )
| A、若a∥b,b?α,则a∥α |
| B、若a∥α,b?α,则a∥b |
| C、若a⊥α,b⊥α,则a∥b |
| D、若a⊥b,b⊥α,则a∥α |
下列各组中的两个函数是同一函数的为( )
(1)y=
,y=x-5;
(2)y=
,y=
;
(3)y=|x|,y=
;
(4)y=x,y=
;
(5)y=(2x-5)2,y=|2x-5|.
(1)y=
| (x+3)(x-5) |
| x+3 |
(2)y=
| x+1 |
| x-1 |
| (x+1)(x-1) |
(3)y=|x|,y=
| x2 |
(4)y=x,y=
| 3 | x3 |
(5)y=(2x-5)2,y=|2x-5|.
| A、(1),(2) |
| B、(2),(3) |
| C、(3),(5) |
| D、(3),(4) |