题目内容

动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为(  )
A、x2+y2=32
B、x2+y2=16
C、(x-1)2+y2=16
D、x2+(y-1)2=16
考点:轨迹方程
专题:计算题,直线与圆
分析:设P为(x,y),依据题中条件动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,列关于x,y的方程式,化简即可得点P的轨迹方程.
解答: 解:设P(x,y),则由题意可得2
(x-2)2+y2
=
(x-8)2+y2

化简整理得x2+y2=16.
故选:B
点评:求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网