ÌâÄ¿ÄÚÈÝ
10£®£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÒÑÖªA£¬BΪÍÖÔ²µÄ×óÓÒÁ½¸ö¶¥µã£¬TΪÍÖÔ²ÉÏÔÚµÚÒ»ÏóÏÞÄÚµÄÒ»µã£¬lΪ¹ýµãBÇÒ´¹Ö±xÖáµÄÖ±Ïߣ¬µãSΪֱÏßATÓëÖ±ÏßlµÄ½»µã£¬µãMÒÔSBΪֱ¾¶µÄÔ²ÓëÖ±ÏßTBµÄÁíÒ»¸ö½»µã£¬ÇóÖ¤£ºO£¬M£¬SÈýµã¹²Ïߣ®
·ÖÎö £¨¢ñ£©ÓÉa¼°ÍÖÔ²µÄÀëÐÄÂʹ«Ê½ÇóµÃcÖµ£¬Ôòb2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßATµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨ÀíÇóµÃTµã×ø±ê£¬ÓÉBT¡ÍSM£¬Ôò$\overrightarrow{SO}$=£¨-$\sqrt{2}$£¬-2$\sqrt{2}$k£©£¬Ôò$\overrightarrow{SO}$•$\overrightarrow{BT}$=$\frac{8{k}^{2}-8{k}^{2}}{1+2{k}^{2}}$=0£¬BT¡ÍSO£¬¼´¿ÉO£¬M£¬SÈýµã¹²Ïߣ®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª£ºa=$\sqrt{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòc=1£¬
ÓÖb2=a2-c2=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£» ¡£¨4·Ö£©
£¨¢ò£©ÉèÖ±ÏßAT·½³ÌΪ£ºy=k£¨x+$\sqrt{2}$£©£¬£¨k£¾0£©£¬ÉèµãT×ø±êΪ£¨x1£¬y1£©£¬
$\left\{\begin{array}{l}{y=k£¨x+\sqrt{2}£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬Ôò£¨1+2k2£©x2+4$\sqrt{2}$k2x+4k2-1=0£¬¡£¨5·Ö£©
ÓÉΤ´ï¶¨Àíx1x2=$\frac{4{k}^{2}-2}{1+2{k}^{2}}$£¬ÓÖAµã×ø±êΪ£¨-$\sqrt{2}$£¬0£©£¬
µÃx1=$\frac{\sqrt{2}-2\sqrt{2}{k}^{2}}{1+2{k}^{2}}$£¬y1=$\frac{2\sqrt{2}k}{1+2{k}^{2}}$£¬¡£¨7·Ö£©
ÓÖBµã×ø±êΪ£¨$\sqrt{2}$£¬0£©£¬Ôò$\overrightarrow{BT}$=£¨-$\frac{4\sqrt{2}{k}^{2}}{1+2{k}^{2}}$£¬$\frac{2\sqrt{2}k}{1+2{k}^{2}}$£©£¬¡£¨8·Ö£©
ÓÉÔ²µÄÐÔÖʵãºBT¡ÍSM£¬
ËùÒÔ£¬ÒªÖ¤Ã÷O£¬M£¬SÈýµã¹²£¬Ö»ÒªÖ¤Ã÷BT¡ÍSO¼´¿É£¬¡£¨9·Ö£©
ÓÖSµãºá×ø±êΪ$\sqrt{2}$£¬ÔòSµã×ø±êΪ£¨$\sqrt{2}$£¬2$\sqrt{2}$k£©£¬$\overrightarrow{SO}$=£¨-$\sqrt{2}$£¬-2$\sqrt{2}$k£©£¬
$\overrightarrow{SO}$•$\overrightarrow{BT}$=$\frac{8{k}^{2}-8{k}^{2}}{1+2{k}^{2}}$=0£¬¡£¨11·Ö£©
¼´BT¡ÍSO£¬ÓÖBT¡ÍSM£¬
¡àO£¬M£¬SÈýµã¹²Ïߣ®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $[{\frac{¦Ð}{12}£¬\frac{¦Ð}{4}}]$ | B£® | $[{\frac{¦Ð}{12}£¬\frac{5¦Ð}{12}}]$ | C£® | $[{\frac{¦Ð}{6}£¬\frac{¦Ð}{3}}]$ | D£® | $[{0£¬\frac{¦Ð}{2}}]$ |
| A£® | 5 | B£® | $\frac{5}{2}$ | C£® | $\frac{5}{4}$ | D£® | $\frac{5}{8}$ |
| A£® | y=¡À$\frac{9}{10}$x | B£® | y=¡À$\frac{10}{9}$x | C£® | y=¡À$\frac{{3\sqrt{10}}}{10}$x | D£® | y=¡À$\frac{{\sqrt{10}}}{3}$x |