题目内容
19.已知正项数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=$\frac{5}{3}$,且bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$.(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=$\frac{1}{(2-{b}_{n})•{2}^{{a}_{n}}}$,求数列{cn}的前n项和Tn,并证明$\frac{1}{2}$≤Tn<$\frac{10}{9}$对一切n∈N*都成立.
分析 (Ⅰ)∵bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$.∴${b}_{2}-{b}_{1}=\frac{2}{{a}_{1}({a}_{1}+2)}$,$\frac{2}{{a}_{1}({a}_{1}+2)}=\frac{2}{3}$,解得a1=1 (负值舍去),即数列{an}是公差为2,首项为1的等差数列,可得an=2n-1,bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$.由累加法得:${b}_{n}-{b}_{1}=1-\frac{1}{2n-1}$,从而可求得${b}_{n}=2-\frac{1}{2n-1}$;
(Ⅱ)cn=$\frac{1}{(2-{b}_{n})•{2}^{{a}_{n}}}$=$\frac{2n-1}{{2}^{2n-1}}$,由错位相减法得Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$.令f(n)=$\frac{6n+5}{{2}^{2n-1}}$,f(n+1)-f(n)=$\frac{6n+11}{{4•2}^{2n-1}}-\frac{6n+5}{{2}^{2n-1}}=\frac{-1n-9}{{2}^{2n+1}}<0$,则Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$递增,即$\frac{1}{2}$≤Tn<$\frac{10}{9}$对一切n∈N*都成立.
解答 解:(Ⅰ)∵bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$.∴${b}_{2}-{b}_{1}=\frac{2}{{a}_{1}({a}_{1}+2)}$,$\frac{2}{{a}_{1}({a}_{1}+2)}=\frac{2}{3}$,解得a1=1 (负值舍去)
即数列{an}是公差为2,首项为1的等差数列,∴an=2n-1
bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$.
${b}_{2}-{b}_{1}=\frac{1}{1}-\frac{1}{3}$,
${b}_{3}-{b}_{2}=\frac{1}{3}-\frac{1}{5}$,
${b}_{4}-{b}_{3}=\frac{1}{5}-\frac{1}{7}$…
${b}_{n}-{b}_{n-1}=\frac{1}{2(n-1)-1}-\frac{1}{2(n-1)+1}$
由累加法得:${b}_{n}-{b}_{1}=1-\frac{1}{2n-1}$,∴${b}_{n}=2-\frac{1}{2n-1}$
(Ⅱ)∵(2-bn)2${\;}^{{a}_{n}}$=$\frac{{2}^{2n-1}}{2n-1}$∴cn=$\frac{1}{(2-{b}_{n})•{2}^{{a}_{n}}}$=$\frac{2n-1}{{2}^{2n-1}}$,
Tn=$\frac{1}{{2}^{1}}+\frac{3}{{2}^{3}}+\frac{5}{{2}^{5}}+…+\frac{2n-3}{{2}^{2n-3}}+\frac{2n-1}{{2}^{2n-1}}$…①
$\frac{1}{{2}^{2}}$Tn=$\frac{1}{{2}^{3}}$+$\frac{3}{{2}^{5}}$+…+$\frac{2n-5}{{2}^{2n-3}}$+$\frac{2n-3}{{2}^{2n-1}}$+$\frac{2n-1}{{2}^{2n+1}}$…②
①-②得$\frac{3}{4}{T}_{n=\frac{1}{2}}+2(\frac{1}{{2}^{3}}+\frac{1}{{2}^{5}}+…+\frac{1}{{2}^{2n-1}})$-$\frac{2n-1}{{2}^{2n+1}}$
=$\frac{1}{2}+2×\frac{\frac{1}{{2}^{3}}(1-\frac{1}{{2}^{2n-2}})}{1-\frac{1}{4}}-\frac{2n-1}{{2}^{2n+1}}$
=$\frac{5}{6}-\frac{6n+5}{3•{2}^{2n+1}}$
∴Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$.
令f(n)=$\frac{6n+5}{{2}^{2n-1}}$,
∵f(n+1)-f(n)=$\frac{6n+11}{{4•2}^{2n-1}}-\frac{6n+5}{{2}^{2n-1}}=\frac{-1n-9}{{2}^{2n+1}}<0$
∴令f(n)=$\frac{6n+5}{{2}^{2n-1}}$,当n∈N+时递减,则Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$递增.
∴${T}_{1}≤{T}_{n}<\frac{10}{9}$,即$\frac{1}{2}$≤Tn<$\frac{10}{9}$对一切n∈N*都成立.
点评 本题考查了数列的递推式,数列求和,数列的单调性,属于中档题.
| A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | c<a<b |
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
| A. | 3+$\sqrt{2}$ | B. | $\sqrt{10}$+$\sqrt{2}$ | C. | $\sqrt{5}$+$\sqrt{2}$ | D. | 3$\sqrt{2}$ |