题目内容

已知n∈N,常数p,q均大于1,且都不等于2,则
lim
n→∞
pn+1-qn
pn+2-2qn+1
=(  )
A、
1
p
1
2q
B、-
1
p
或-
1
2q
C、
1
p
1
2q
p-1
p2-2q
D、-
1
p
或-
1
2q
p-1
p2-2q
考点:极限及其运算
专题:计算题
分析:分p>q,p=q,p<q三种情况进行讨论,然后分子分母同时除以较大数的n次方,然后求得极限.
解答: 解:当p>q时,
lim
n→∞
pn+1-qn
pn+2-2qn+1
=
lim
n→∞
p-(
q
p
)n
p2-2q(
q
p
)n
=
1
p

当p=q时,
lim
n→∞
pn+1-qn
pn+2-2qn+1
=
lim
n→∞
(p-1)pn
(p-2)pn+1
=
p-1
p2-2q

当p<q时,
lim
n→∞
pn+1-qn
pn+2-2qn+1
=
lim
n→∞
p(
p
q
)n-1
p2(
p
q
)n-2q
=
1
2q

lim
n→∞
pn+1-qn
pn+2-2qn+1
=
1
p
1
2q
p-1
p2-2q

故选:C.
点评:本题考查极限及其运算,考查了分类讨论的数学思想方法,是基础的计算题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网