题目内容

2.已知函数f(x)=$\sqrt{3}$sinx•cosx-$\frac{1}{2}$cos2x(x∈R).
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,且f(C)=1,B=30°,c=2$\sqrt{3}$,求△ABC的面积.

分析 (1)利用两角差的正弦函数公式化简解析式可得f(x)=sin(2x-$\frac{π}{6}$),结合正弦函数的性质及周期公式即可得解.
(2)由已知可得sin(2C-$\frac{π}{6}$)=1,可求范围-$\frac{π}{6}$<2C-$\frac{π}{6}$<$\frac{11π}{6}$,进而可求C,B,A,解得b的值,利用三角形面积公式即可计算得解.

解答 (本题满分为13分)
解:(1)∵f(x)=$\sqrt{3}$sinx•cosx-$\frac{1}{2}$cos2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$)…4分
∵x∈R,∴f(x)的最小值为-1…5分
∴最小正周期T=$\frac{2π}{2}$=π…6分
(2)∵f(C)=1,
∴sin(2C-$\frac{π}{6}$)=1,
∵0<2C<2π,可得:-$\frac{π}{6}$<2C-$\frac{π}{6}$<$\frac{11π}{6}$,
∴C=$\frac{π}{3}$…8分
∵B=$\frac{π}{6}$,可得:A=$\frac{π}{2}$,
∵c=2$\sqrt{3}$,可得:b=2,…12分
∴S△ABC=$\frac{1}{2}$bcsinA=2$\sqrt{3}$.…13分

点评 本题主要考查了两角差的正弦函数公式,正弦函数的图象和性质,周期公式,正弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网