题目内容
已知数列{an}中,a1=1前n项和为Sn,
(Ⅰ)若点P(an,an+1)(n∈N+)在直线x-y+1=0上,求数列{an}通项公式并求
+
+
+…+
的和;
(Ⅱ)若点p(an,an+1)(n∈N+)在直线2x-y+1=0上,求证:数列{an+1}为等比数列.
(Ⅰ)若点P(an,an+1)(n∈N+)在直线x-y+1=0上,求数列{an}通项公式并求
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
(Ⅱ)若点p(an,an+1)(n∈N+)在直线2x-y+1=0上,求证:数列{an+1}为等比数列.
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知得an+1-an=1,且a1=1,从而得到an=n.Sn=n+
×1=
,进而
=
=2(
-
),由此能求出
+
+
+…+
的和.
(Ⅱ)由已知得2an-an+1+1=0,从而an+1+1=2(an+1),由此能证明数列{an+1}是首项为2,公比为2的等比数列.
| n(n-1) |
| 2 |
| n(n+1) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
(Ⅱ)由已知得2an-an+1+1=0,从而an+1+1=2(an+1),由此能证明数列{an+1}是首项为2,公比为2的等比数列.
解答:
(Ⅰ)解:∵点P(an,an+1)在直线x-y+1=0上,
∴an+1-an=1,且a1=1,
∴数列{an}是以1为首项,1为公差的等差数列,
∴an=n.
Sn=n+
×1=
,
∴
=
=2(
-
),
∴
+
+
+…+
=2(1-
+
-
+…+
-
)
=2(1-
)
=
.
(Ⅱ)证明:∵点p(an,an+1)(n∈N+)在直线2x-y+1=0上,
∴2an-an+1+1=0,
∴an+1=2an+1,
∴an+1+1=2(an+1),
又a1+1=2,
∴数列{an+1}是首项为2,公比为2的等比数列.
∴an+1-an=1,且a1=1,
∴数列{an}是以1为首项,1为公差的等差数列,
∴an=n.
Sn=n+
| n(n-1) |
| 2 |
| n(n+1) |
| 2 |
∴
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
=
| 2n |
| n+1 |
(Ⅱ)证明:∵点p(an,an+1)(n∈N+)在直线2x-y+1=0上,
∴2an-an+1+1=0,
∴an+1=2an+1,
∴an+1+1=2(an+1),
又a1+1=2,
∴数列{an+1}是首项为2,公比为2的等比数列.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的证明,考查等比数列的证明,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
| A、棱柱 | B、棱台 |
| C、棱柱与棱锥的组合体 | D、不能确定 |
已知等比数列{an}的前n项和为Sn,且S5=2,S10=6,则a16+a17+a18+a19+a20=( )
| A、54 | B、48 | C、32 | D、16 |